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ABSTRACT

High dimensional classification problems have gained increasing attention in
machine learning, and feature selection has become essential in executing machine
learning algorithms. In general, most feature selection methods compare the scores of
several feature subsets and select the one that gives the maximum score. There may
be other selections of a lower number of features with a lower score, yet the difference
is negligible. This article proposes and applies an extended version of such feature
selection methods, which selects a smaller feature subset with similar performance to
the original subset under a pre-defined threshold. It further validates the suggested
extended version of the Principal Component Loading Feature Selection (PCLFS-ext)
results by simulating data for several practical scenarios with different numbers of
features and different imbalance rates on several classification methods. Our
simulated results show that the proposed method outperforms the original PCLES
and existing Recursive Feature Elimination (RFE) by giving reasonable feature
reduction on various data sets, which is important in some applications.

Subjects Data Mining and Machine Learning, Data Science
Keywords Feature selection, Principal component loading, Classification, Class imbalance

INTRODUCTION

With the increased development of machine learning concepts and related topics, feature
selection has become crucial as most real-world data sets suffer from many features. This
problem is known as the curse of dimensionality (Bellman, 1957), and many sectors
negatively experience this issue, including in the worlds of business, industry, and scientific
research.

Selecting fewer features, known as feature selection, provides several significant
advantages. With feature selection, dimensionality reduction can decrease the size of the
data without harming the overall performance of the analytical algorithm (Nisbet, 2012).
The decrease of computational time while increasing the algorithm’s predictive power and
interpretability are notable gains (Miche et al., 2007; Samb et al., 2012). Then again, a
model with fewer features may be more interpretable and less costly, especially if there is a
significant cost of measuring the features. Statistically, it is more convenient and attractive
to estimate fewer parameters, and it will also reduce the negative impact of non-
informative features. Further, it becomes increasingly challenging to reveal patterns in data
with many features (Guo et al., 2002).
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The main three categories of feature selection techniques are filter, wrapper, and
embedded methods. Filter methods measure the feature relevance to the dependent
variable; hence, only features with meaningful relationships would be included in a
classification model. They use statistical methods such as Pearson’s Correlation, Analysis
of Variance (ANOVA), Linear discriminant analysis (LDA), and Chi-Squared statistics to
select a subset of features. By training a model, wrapper methods measure the usefulness of
a subset of features (Saeys, Inza ¢» Larraniaga, 2007). Forward Feature Selection, Backward
Feature Elimination (Weisberg, 2005), and Recursive Feature Elimination (RFE) (Guyon
et al., 2002) are typical examples of commonly used wrapper methods. The third category,
embedded methods, optimize the objective function or performance of a learning
algorithm or model and also use an intrinsic model-building metric during learning. L1
(LASSO) regularization (Tibshirani, 1996) and Elastic Net (Zou ¢ Hastie, 2005) are
commonly known embedded methods. Combining these three types of techniques to
produce ensemble feature selection is called the ensemble feature selection method, which
combines multiple feature subsets to select an optimal subset of features. Hashemi,
Dowlatshahi & Nezamabadi-pour (2021) has proposed a multi-criteria decision-making
(MCDM) approach, which is an ensemble of filter methods. This article mainly considers
the wrapper methods (Kohavi ¢ John, 1997), which iteratively examine different subsets to
improve accuracy on fewer features. RFE (Guyon et al., 2002) is one such commonly used
technique. In standard RFE, a feature is eliminated if it is the least important to predicting,
and features are ranked according to the model’s strength by considering the performance
scoring method.

Various approaches and extensions in the literature have been suggested to the existing
feature selection mechanisms such as RFE. Samb et al. (2012) introduced an RFE-SVM-
based feature selection approach by reusing previously removed features in RFE. They
have used two local search tools, Bit-Flip (BF) and Attribute-Flip (AF), to improve the
quality of the RFE. But this approach is specific to the SVM classification, where our
suggested method can be applied to any classification method, which facilitates a feature
ranking criterion with feature importance. An enhanced recursive feature elimination has
been introduced by Chen ¢ Jeong (2007) which is also an algorithm based on RFE and
SVM. It also assesses a weak feature removed by the standard RFE based on the
classification performance before and after removing that feature and reconsidering it in
the feature subset. There are other proposed methods that use thresholds to identify the
feature subset. A ROC-based feature selection metric for small samples and imbalanced
data (FAST) is recommended by Chen ¢» Wasikowski (2008). This method is based on the
area under a ROC curve by discretizing the distribution. An extension of the FAST
method, but another threshold-based feature selection (TBFS) technique is discussed by
Wang, Khoshgoftaar ¢ Van Hulse (2010), where they produce 11 distinct versions of TBFS
based on 11 different classifier performance metrics. A cluster-based feature selection,
SVM-RCE, has been introduced by Yousef et al. (2007, 2021), which uses K-means to
identify correlated gene clusters and SVM to identify the ranks of each cluster. Then, the
recursive cluster elimination (RCE) method iteratively removes the clusters with the least
performance accuracy.
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Usually, the two main objectives for feature selection are to select the smallest possible
subset with a given discrimination capability and to find the subset of features with the
minimum possible generalization error (Granitto et al., 2006). This article examines
different subsets of features to maintain accuracy on fewer features.

We propose a method as an extended version of the suggested PCLFS (Principal
Component Loading Feature Selection) method (Matharaarachchi, Domaratzki ¢
Muthukumarana, 2021; Matharaarachchi, 2021) explained in “Methods and Experimental
Design”. PCLEFS, a wrapper-based feature selection technique, ranks features by the sum of
absolute values of principal component loadings. After determining the order of the
importance of each feature and obtaining accuracy measures for each subset, the
remaining question in feature selection is how to determine the best number of features.
PCLES uses a conventional feature selection method, the sequential forward selection, to
choose the optimal feature subset. It fits a model and captures the most informative feature
subset, which is the subset that maximizes the F1-score using a sequential feature selection
technique. By adding one or a small number of features per loop, PCLFS attempts to
eliminate dependencies and collinearity in the model. The proposed method further
identifies a local maximum with a practical implication. Several other optimization
mechanisms also have been introduced in the literature to search for the optimal feature
subset. Out of many such methods, Particle swarm optimization (PSO)-based feature
selection (Kennedy ¢ Eberhart, 1995; Shi ¢ Eberhart, 1998), which is a kind of heuristic
algorithm based on swarm intelligence, has gained significant attention. This algorithm
finds the optimal solution through collaboration and information sharing between
individual groups of features. In “Experimental Results”, we will also compare our results
with some PSO-based methods.

Prior research also compares the impact of class re-balancing techniques on the
performance of binary prediction models for a different choice of data sets, classification
techniques, and performance measures. Hence, in this article, we focus on binary
classification problems with only two possible outcomes. Class imbalance occurs when the
number of instances in the small (minority) class is significantly smaller than that in the
large (majority) class. It produces a significant negative influence on standard classification
learning algorithms. The minority class is important in many practical situations;
therefore, it requires an intense urgency to be identified (Sun, Wong & Kamel, 2009).
However, studies on class imbalance classification have gained more emphasis only in
recent years (Kotsiantis, Kanellopoulos & Pintelas, 2005) and many re-sampling methods
have been introduced to eradicate this issue. This article will mainly use Synthetic Minority
Oversampling TEchnique (SMOTE) (Chawla et al., 2002) as a re-balancing technique to
achieve higher accuracy in applications.

Problem statement

Although we can already reduce the number of features using PCLES according to a given
selection scoring criteria, there is room to improve it further. We observed that the number
of features of the chosen subset by PCLES might not be the expected quantity if the desire
is to have a smaller number of features. In particular, there are other selections of a lower
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Figure 1 Ideal Feature selection using PCLFS method. The dotted line indicates the actual number of
informative features. The red point indicates the PCLES feature selection, which selects all the infor-
mative features in the data set. Full-size K&l DOT: 10.7717/peerj-cs.1081/fig-1
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Figure 2 Example 1: Feature selection using proposed method. The dotted line indicates the actual

number of informative features. The red point indicates the PCLFS feature selection with number of

selected features and the F1-score while the red point explains the same for the proposed method.
Full-size K&] DOTI: 10.7717/peerj-cs.1081/fig-2

number of features with negligibly lower model accuracy. Therefore, we consider the
challenge of finding an optimal threshold to identify this minuscule difference. We also
compare simulation and application results with existing PCLFS and RFE results.

To illustrate this procedure with a contrived example we will consider a simulated data
set with ten informative features out of 30. Figure 1 shows an ideal PCLEFS curve; the curve
leaps to an excellent accuracy when the 10 informative features are captured, then slightly
decreases F-score as the non-informative features are added into the model.

But, example 1 in Fig. 2 shows a plot of the F1-score of different sized subsets of a fixed
data set, all chosen based on the PCFLS method described in “Methods and Experimental
Design”. This figure shows that PCLES (blue point) has selected 29 features, but the
F1-score does not appear to be much improved after around 10 features. Meanwhile, the
proposed method (red point) suggests 10 features as the smaller number of features with
similar performance. According to Fig. 3 (example 2), the proposed approach (red point)
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Figure 3 Example 2: Feature selection using proposed method. The dotted line indicates the actual

number of informative features. The red point indicates the PCLES feature selection with number of

selected features and the F1-score while the red point explains the same for the proposed method.
Full-size 4] DOT: 10.7717/peerj-cs.1081/fig-3

finds a comparable value to the informative features in the data set under the given
threshold, while the original selection (in blue) is far away from the desired number of
features to be selected.

Goal

Our primary focus in this article is analyzing the behavior of the PCLES method towards
classification accuracy and suggesting an improved extension for selecting a smaller number
of features with similar performance with the previous method. Hence, we introduce an
algorithm with a threshold to achieve this objective. Besides choosing the minimal number
of features, we suggest the appropriate feature subset by considering the informativeness of
features. To cover most practical scenarios, we synthetically simulated data using the scikit-
learn python library (Pedregosa et al., 2011) and compared the performance of the existing
and the proposed method. These algorithms will be further examined on five benchmark
continuous data sets with different numbers of objects, imbalance rates, and features to
derive further conclusions. For the practical scenario, we also use a re-sampling technique,
Synthetic Minority Over-sampling Technique (SMOTE) (Chawla et al., 2002) to determine
the performance of the model on the imbalanced data set.

The remainder of this article is structured as follows. Section 2 describes the data
preparation introduces the methods used in the study with the experimental design.
Section 3 presents the results of the simulation studies, and the results in a real-world
application are illustrated and interpreted in Section 4. Finally, Section 5 of this article is
included with a discussion of its contributions and limitations.

METHODS AND EXPERIMENTAL DESIGN
RFE

RFE can be fitted on any classification model with an inherent quantification of the
importance of a feature. It removes the weakest features by a step count, where the step is
the number of features removed at each iteration. This process repeats until the stipulated
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number of features is reached. Features are ranked according to the importance identified
by the model. Then, to find the optimal number of features, cross-validation is used in each
iteration and selects the subset giving the best scoring value as the desired feature subset.

PCLFS

Principal Component Loading Feature Selection uses the sum of absolute values of
principal component loadings to order features and capture the most informative feature
subset, which is the subset that obtains the maximum F1-score using a sequential feature
selection technique (Matharaarachchi, Domaratzki ¢ Muthukumarana, 2021). This
method can be fitted on any classification model as feature ordering is entirely
independent of the classification method. The PC (principal components) loadings are the
coefficients of the linear combination of the original variables constructed by the PCs. In
this study, PCLFS orders features using the sum of the first two PC loadings’ absolute
values, trains classification models on training data, and selects the optimal feature subset
that obtains the maximum F1-score. Starting from the most informative feature, it adds
features one by one according to the order defined by the sum of the first two PC loadings
until all features are added. Hence the total number of subsets will equal the number of
features in the data set. It does testing at each step (i.e., F1-score) and, in the end, obtains
the feature subset which gives the maximum F1-score.

inputs:

Training samples: Xo = [X1, X5, ..., X/]"

Class labels: y = [y1, v, ..., yd"

outputs:

Feature ranked list: ¥ = [r, 72, ..., 7]

Grid scores: g = [g1, 82, - - -, gn)

Number of selected features by PCLFS: 1,

Here, n is the number of features in the data set, and € is the number of samples in the
training set. Grid scores (g) are the F1-scores such that g; corresponds to the F1-score of
the i feature subset with the first i features of the PCLFS ordered feature list.

PCLEFS is a newly introduced feature selection method (Matharaarachchi, Domaratzki
& Muthukumarana, 2021). Therefore, we use RFE to compare results as RFE is one of the
most commonly used wrapper feature selection methods.

Suggested method

In this article, we propose a new algorithm based on PCLES. The suggested method is an
extension of the PCLFS method, and the results that come out of the PCLES algorithm are
fed into the new algorithm to get the desired output. The main difference between the new
method and the original PCLES is that the original PCLES chooses the feature subset giving
the maximum score. In contrast, the suggested method identifies a feature subset under an
applicable threshold to obtain a smaller feature subset with similar performance and
minimal loss. We compare PCLFS and the extended method on various synthetic data sets
and show that the suggested method reduces the number of features with a bearable score
reduction. The algorithm for the new method is described below.
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inputs:

Grid scores: g = [g1,22, - - -, §n)

Number of selected features by PCLFS: g

Total number of features: n

Feature importance scores (obtained from the classifier): i = [i1, i, - . ., i ]
Maximum tolerable F1-score reduction: T (User-defined).

procedure:

Step 1: Consider all the local maximum grid scores (gj) corresponding to the number of
subsets of features selected by PCLFS which is less than the optimal number of
features selected (rpa5) where,

g > max(gi-1,g+1), J < Mpdss

Step 2: Connect each point with the maximum point (g, ) and compute each line’s

pclfs
gradient values (i.e., the tangent value of the cone).

Step 3: Compare the gradient values with a threshold value .

A)’)j
(Ax);

gradient = <t (1)

The threshold () can be interpreted as the tolerable reduction of the F1-score to reduce
one feature, where,

_ Maximum tolerable Flscore reduction T 2

Total number of features n

Step 4: Obtain the F1-score, which gives the smallest number of features (1,roposed)-

Note: If there is no value found for the given condition, we will return the same
PCLES results.

Step 5: To get the relevant feature subset, use feature importance scores (i). Then obtain the
best 1yr0posed features as the smallest feature subset with similar performance (s).

outputs:

The smallest number of features with minimum scoring loss: 7,0posed

Relevant feature subset: s.

Figure 4 presents how the algorithm picks the desired selection using the gradient
method. In our algorithm, if we only consider F1-scores that give the smaller number of
features, sometimes we end up with values where the neighbors are larger, and a larger F1-
score for the neighbor indicates that the neighbor should be chosen. To avoid such
situations and be well-defined, we require the selected value to be a local maximum besides
having the smallest number of features.
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Figure 4 Visualization of the hypothetical execution of the proposed algorithm. Graphical view of the
suggested algorithm. 0; is the angle between the horizontal dotted line (a line parallel to the number of
selected features axis) and the red line, which combines the j point with the maximum point. The blue
point indicates the PCLFS feature selection with number of selected features and the F1-score while the
red point explains the same for the proposed method.  Full-size K&l DOT: 10.7717/peerj-cs.1081/fig-4

Finding an optimal threshold to distinguish the small difference between F1-scores was
challenging as it depends on many factors. Therefore, the gradient method was introduced
to find the F1-score reduction per feature for each subset selection. We compared each
gradient with the maximum bearable gradient value. When we only consider a numerical
cut-off value as the threshold, it will reduce the same amount regardless of the number of
features removed. The tolerable F1-score should be explained for a single feature reduction
to avoid this problem. We also observed that when the number of features in the data set
increases, F1-score reduces drastically unless the threshold is extremely small, and it is
required to change the threshold according to the number of features in the data set.
Therefore, the threshold had to be defined to include the number of features as a parameter
to have consistent solutions. Hence, we considered a tolerable F1-score decrease for one
feature, in other words, “the threshold,” by having the maximum tolerable F1-score
reduction over all the features.

Simulation study

When introducing an algorithm, we performed a simulation study to determine how the
factors affect the behavior of the final result. Therefore, we synthetically simulate samples,
where the sample size is 1,000. The number of classes is two (binary classification), and
there is only one cluster per class. Several numbers of features were considered to compare
different situations. Since different classification models perform uniquely in different data
sets, we aim to introduce a general tool that works with multiple models. We train different
binary classification models in data sets with different numbers of features and imbalance
rates to ensure this. Initially, five different binary classification models were trained with
PCLEFS. They are Logistic Regression (LOGIT) (Weisberg, 2005), Linear Support Vector
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Machine (SVM_Linear) (Xia ¢ Jin, 2008), Decision Tree, Random Forest (RFC) (Breiman,
2001), and Light Gradient Boosting Classifier (LGBM_C) (Friedman, 2001).

SIMULATION RESULTS

This section illustrates the results obtained through synthetic samples and the simulation
study results on all three methods, existing RFE, PCLFS, and proposed PCLFS-ext.

To capture the variability of the final F1-scores of each method, we conducted a
simulation study to determine the validity of the suggested combined approach. One
hundred samples are simulated from each scenario to reduce the variability in
experimental results, while the number of informative features is increased from one to the
total number of features. All features are classified as informative or non-informative. No
redundant features or repeated features are included in simulated data sets. We generated
data for 50%:50% balanced data and two other imbalance rates, 70%:30% and 90%:10%.
Two sample sizes with 200 and 1,000 samples were also examined, and results were
discussed only for sample size 200 unless there is a notable discrepancy to emphasize. Most
importantly, in this analysis, the models were fitted on original data and re-sampled data
with SMOTE. Here, the results are only illustrated for the logistic regression model.
Supplemental Materials contain results for other classification models, with highly
imbalanced data with a 90%:10% rate and a sample size of 1,000.

Simulation results without SMOTE

Results obtained for the comparison of model F1-scores and feature selection correct
percentages of RFE and PCLFS are shown in Fig. 5. The figure shows results for sample
sizes of 200 for the Logit classifier when the threshold is 0.0017. However, we also compare
the extended version of PCLES (PCLES-ext), which gives even a higher feature selection
correct percentage for an insignificantly smaller F1-score reduction over the PCLFS
method.

To further understand the selection of features, we plotted the number of selected
features and feature selection true positive rate (TPRy;) against the number of informative
features given. Feature selection TPR was calculated using the equation explained in
Matharaarachchi, Domaratzki & Muthukumarana (2021). For the original data, PCLFS
and PCLFS-ext methods pick a relatively larger number of features than RFE. Nevertheless,
the feature selection TPR is significantly higher in the proposed methods. The results with
200 sample size are shown in Fig. 6. We note that when the sample size is smaller, the
PCLFS-ext method is not tempted to pick a lower number of features in highly imbalanced
data under the given threshold of 0.0017. But, for a higher sample size of 1,000, the
proposed method outperformed the existing methods in each scenario considered in the
simulation. In Fig. 7 the results are shown for an imbalance rate of 0.9:0.1. Similar but high
pronounced effects are visible at the other imbalance rates.

Simulation results with SMOTE

We repeated the same procedure for imbalanced data by re-balancing using SMOTE with
the Logit classifier for sample sizes 200 and 1,000. Except for having lower feature selection
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model, when the threshold is 0.0017.
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correct percentages for highly imbalanced data with smaller sample sizes (in Fig. 8), in all
the other scenarios, PCLFS extended version performs much better than PCLFS and RFE
on the same data set. Meanwhile, for data sets with a larger sample size (e.g., 1,000), PCLFS
and PCLFS-ext methods even pick a lower number of features than RFE when there are
few informative features in the data set (Fig. 9). This property is valuable when we are
dealing with real-world problems.

EXPERIMENTAL RESULTS
SPECTF heart data

To analyze the behavior of models on a real-world data set, we consider the publicly
available Single-photon emission computed tomography (SPECT) heart data set (Kurgan
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et al., 2001; Krzysztof, Daniel ¢ Ning, 1997; Bache & Lichman, 2013), which describes
diagnosing cardiac abnormalities using SPECT. This is the same data set used in
(Matharaarachchi, Domaratzki ¢ Muthukumarana, 2021), and use it in order to be
consistent with the analysis and results. Response of the data set consists of two categories:
normal and abnormal, by considering the diagnosis of images. This data consists of binary
class imbalanced data with a higher number of numerical features and a lower number of
instances.

The sample consists of data from 267 patients with 44 continuous features that have
been created for each patient. Hence, it has 267 instances that are described by 45 attributes
(44 continuous and one binary class). We also divided the data set into two groups, 75%
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when the threshold is 0.0017.

training samples and 25% test samples. The class-imbalanced rate for the data set is
79.4%:20.6%, where the minority class represents the abnormal patients. The imbalance is

the same in the training and test set.
Then we applied Synthetic Minority Oversampling Technique (SMOTE) to handle

imbalanced data to achieve higher accuracy in classification models. The SMOTE aims to

balance class distribution by randomly increasing minority class examples by creating

similar instances.

We compare the proposed PCLFS and PCLES-ext model results with the final F1-scores
of the existing RFE method. The results are shown in Table 1 highlighting the best results.
For SMOTE data, PCLFS selects a smaller number of features than RFE, with a higher F1-
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Table 1 Final F1-score comparison between RFE and proposed methods (PCLFS/PCLFS-ext (t = 0.0011)). Bold font indicates the best result

based on the Fl-score.

SMOTE Method Basic RFE PCLFS PCLFS-ext Feature F1-score
reduction%/ (reduction)/

#Features F1-scores #Features Fl-scores #Features Fl-scores #Features F1-scores (increment%) increment

TRUE  Logit 44 0.6809 36 0.6957 24 0.6957 11 0.6939 56.8% (0.0018)
LGBM 44 0.6667 27 0.6286 13 0.7027 - - 31.8% 0.0741
Decision Tree 44 0.5556 44 0.5556 9 0.6667 3 0.6666 93.2% 0.1110
REC 44 0.6486 38 0.6111 42 0.7059 12 0.6842 59.0% 0.0731
SVM-Linear 44 0.6511 30 0.6977 12 0.7727 - - 40.9% 0.0750
FALSE Logit 44 0.5455 30 0.5000 44 0.5455 - - (31.8%) 0.0455
LGBM 44 0.6250 15 0.5455 15 0.6250 - - 0.0% 0.0795
Decision Tree 44 0.5294 27 0.5161 9 0.5946 - - 40.9% 0.0785
REC 44 0.2609 9 0.3704 11 0.4444 - - (4.5%) 0.0740
SVM-Linear 44 0.5946 21 0.5882 37 0.6316 - - (36.4%) 0.0434

score for all the classification models. It further reduces the number of features
considerably in the PCLFS-ext method for the Logit, decision tree, and RFC models, and
the last two columns of the Table 1 depicts the reduction/increment of the percentages of
features and the F1-scores over RFE and the proposed method where

) _ Number of features reduced/(increased)
Feature reduction/(increment)% =

Total number of features

Figure 10 displays how the PCLFS-ext version picks a lesser number of features with
similar performance with a maximum tolerable F1-score of 0.05, hence the threshold of
0.0011. Similar to the simulation results in “Simulation Results”, the PCLFS-ext method
picked a lower number of features than PCLES when the data set is balanced.

Further experiments on different data sets

To further evaluate the performance of the existing and proposed approaches, we used five
different continuous data sets which downloaded from UCI machine learning repository
(Bache & Lichman, 2013). They all have a binary response variable with a different number
of cases, features and imbalance rates (Table 2). For every trial, we divided each data set
into two groups, 75% training samples and 25% test samples. To capture the variability of
imbalance data, we executed methods with and without SMOTE on the same data sets. The
Logit model was used as the classifier and classification error rate and F1-score were used
to evaluate the performance of each method on all data sets.

Table 3 indicates the comparison of different methods after 50 independent trials on
each data set. Here, ‘Basic’ is the data set with the original feature set utilized for
classification. ‘Size’ indicates the average number of features selected by each method in 50
independent trials. Other than having F1-score, we used classification accuracy (error rate)
to compare performance. ‘Best,” ‘mean,’ and ‘std dev’ implies the best, the average, and the
standard deviation of the classification error.
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Table 3 depicts that our proposed method outperforms the existing RFE feature
selection method in various data sets by accomplishing equivalent or higher accuracy. We
also cross-checked the results of the proposed method with the results obtained by Huda ¢
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Table 2 Continuous data sets.

Data set Number of features Number of instances Number of classes Class imbalance rate
German 24 1,000 2 (0.7:0.3)

Ionosphere 34 351 2 (0.73:0.27)

SPECTF 44 267 2 (0.79:0.21)

Sonar 60 208 2 (0.53:0.47)
Musk-Version 1 166 476 2 (0.57:0.43)

Banka (2022) for different PSO-based feature selection methods while using the same real-
world data sets, German, Ionosphere, Sonar, and Musk-Versionl. These methods include
some existing PSO feature selection methods such as PSOPRS, PSOPRSN (a = 0.9 and
o = 0.5), and PSOPRSE, and some newly proposed efficient feature selection methods
using PSO with the fuzzy rough set as fitness function (PSOFRESA, PSOFRFSAN, and
PSOFRFSANA). Result of proposed methods by Huda ¢ Banka (2022) on the same
continuous data sets are also shown in Table 3. Our proposed method showed better
performance than PSOPRS, PSOPRSN (o = 0.9 and « = 0.5, where « is a parameter
crossroads to the degree of dependency) PSOPRSE in every data set. Although the other
methods, PSOFRFSA, PSOFRFSAN, and PSOFRFSANA, make reasonable improvements
over our suggested approach in some data sets, it is not always the case. For instance, our
method indicated better accuracy in the Musk-Versionl data set. Bold font indicates the
best result for each data set based on the error rate.

DISCUSSION

Feature selection has become an essential aspect of matured machine learning methods.
Feature selection is also known as variable selection, feature reduction, attribute selection,
or variable subset selection (Liu ¢» Yu, 2005). This process is essential in practice for many
reasons, especially if we have to collect data from costly sources such as sensors, patients,
blood samples, efc. In such situations, we have to limit the number of features to a
reasonable value; identifying the most important feature subset is crucial. Not only that but
having fewer features also increases the computational efficiency and the prediction
performances of the model. As a solution, we have proposed a new approach for the
existing wrapper methods to select a minimal number of important features with similar
performance. Hence, this is an important contribution as it reduces costs, especially in data
collection.

Most of the wrapper feature selection methods compare scores of several feature subsets
and select the one that gives the maximum score. There are other selections of fewer
features with lower-score, yet with little difference in score. This article proposes and
applies an extended version of selecting a minimal number of features subset instead of
having the subset with the maximum score. PCLFS uses the sum of absolute values of
principal component loadings to rank features and capture the most informative feature
subset. It obtains the best feature subset by comparing the scores, where the feature subset
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Table 3 Result of existing RFE, proposed PCLFS-ext, and PSO-based methods proposed by Huda ¢ Banka (2022) on continuous data sets.
Bold font indicates the best result for each data set based on the error rate.

Data sets Methods Without SMOTE With SMOTE
Size Best Mean + Std_dev  Fl-score  Size Best Mean + Std_dev  Fl-score

SPECTF Basic 44.00 11.89 24.99 + 6.01 0.3961 44.00 12.59 27.57 + 6.44 0.4353
PCLFS 37.14 11.89 19.08 + 3.93 0.4475 15.18 11.89 23.05 £ 5.24 0.5818
PCLFS-ext 34.22 12.59 22.59 + 4.68 0.4457 11.70 11.89 26.15+5.9 0.5794
RFE 21.94 12.59 24.57 + 4.92 0.3783 28.54 11.19 2749 £ 6 0.4526

German Basic 24.00 19.33 23.99 + 1.89 0.8380 24.00 22.67 26.62 + 1.84 0.8118
PCLFS 17.62 18.67 23.17 £ 1.86 0.8445 18.52 21.33 2527 £1.75 0.8214
PCLFS-ext 4.08 23.33 27.69 £ 2.35 0.8281 13.80 21.33 25.76 £ 1.99 0.8155
RFE 17.88 19.33 245 + 249 0.8320 21.26 21.00 26.83 £ 2.11 0.8104
PSOFRFSA 16.14 21.78 22.18 £ 1.31
PSOFRFSAN 0.9 7.9 19.02 21.17 + 1.67
PSOFRFSAN 0.5 5.47 19.38 2191 + 1.07
PSOFRFSANA 0.9 7.81 19.02 21.01 £+ 1.57
PSOFRFSANA 0.5 5.41 19.38 21.37 £ 1.37

Ionosphere Basic 34.00 6.60 12.74 + 2.84 0.9033 34.00 8.49 14.04 = 2.68 0.8940
PCLFS 30.32 6.60 12.28 + 2.68 0.9073 30.24 8.49 13.32 £2.21 0.8978
PCLFS-ext 26.82 6.60 12.79 + 3.04 0.9038 25.62 8.49 13.79 £ 2.61 0.8940
RFE 18.18 6.60 13.25 £ 3.14 0.9017 22.92 9.43 14.38 = 2.69 0.8918
PSOFRFSA 19 5.18 6.81 + 3.13
PSOFRFSAN 0.9 4 5.49 6.84 £ 4.1
PSOFRFSAN 0.5 3.7 5.39 6.93 = 3.93
PSOFRFSANA 0.9 3.7 5.39 6.94 + 3.27
PSOFRFSANA 0.5 3.7 5.39 6.98 + 3.19

Sonar Basic 60.00 15.87 2444 + 494 0.7228 60.00 14.29 24.22 + 4.86 0.7416
PCLFS 39.60 14.29 22.7 £ 4.58 0.7309 39.54 14.29 22.06 + 4.1 0.7599
PCLFS-ext 38.86 14.29 22.76 £ 4.65 0.7304 38.00 14.29 22.1 £4.07 0.7589
RFE 17.04 15.87 2527 £ 6.3 0.7104 15.34 14.29 24.54 £ 5.42 0.7467
PSOFRFSA 34 17.04 194 + 4.01
PSOFRFSAN 0.9 7 14.77 15.2 £ 6.27
PSOFRFSAN 0.5 76.71 15.08 16.78 £ 5.45
PSOFRFSANA 0.9 6.02 14.01 1593 £ 4.2
PSOFRFSANA 0.5 5.13 14.97 15.79 £ 4.02

Musk-Versionl Basic 166.00 10.49 17.68 + 3.22 0.8128 166.00 10.49 17.61 £ 2.53 0.8121
PCLFS 149.22 10.49 15.61 + 2.68 0.8315 150.86 9.79 15.76 £ 2.19 0.8301
PCLFS-ext 141.90 10.49 158 £+ 2.8 0.8302 143.73 9.79 1597 £2.33 0.8286
RFE 73.88 13.29 18.94 £ 4.74 0.7879 88.65 10.49 19.06 + 3.49 0.7945
PSOFRFSA 95.71 22.15 23.11 £ 3.01
PSOFRFSAN 0.9 37.77 22.78 24.12 + 342
PSOFRFSAN 0.5 37.77 22.78 23.19 + 3.47
PSOFRFSANA 0.9 37.7 21.19 22.51 £ 4.01
PSOFRFSANA 0.5 36.17 20.17 2191 £ 3.97
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that gives the best score is identified as the optimal feature subset. Still, some other feature
subsets practically reduce the number of features with minimal score loss.

Our proposed method assesses the number of features below the maximum and receives
the most beneficial smallest number of features and the feature subset with a tolerable score
deduction. For the extended version, we only consider the feature subsets smaller than the
previous subset selection; therefore, having a minimal feature set is guaranteed by the
proposed approach under the threshold. The threshold plays a vital role in the introduced
algorithm as the numerator, the maximum tolerable F1-score, is decided by the user using
their domain knowledge and desire. The selection of the threshold is sensitive to the
imbalance rate of the data. We can use a relatively larger threshold for highly imbalanced
data to achieve a similar result. Although we have considered only five classification
models in examples, like in PCLFS, the proposed method can also be fitted on any
classification model as feature ordering is entirely independent of the classification method
(Matharaarachchi, Domaratzki & Muthukumarana, 2021).

Although the underlying truth of the real-world data is hidden, we compare the result of
the proposed method with existing PCLFS, RFE, and some other PSO-based feature
selection methods on the same real data sets to compare the accuracy of each method.

CONCLUSION

This study introduces a novel gradient-based algorithm to further reduce the number of
features with a similar performance to existing greedy feature selection approaches. The
extended version of the existing PCLFS method was implemented to identify the most
informative features first. First, we compare the proposed approach to PCLES and RFE
results on simulated data sets. and real-world data sets. Simulation results clearly shown
that the proposed method makes a reasonable improvement over existing results,
especially when we have a balanced data set and large sample size. For this purpose, we can
re-balance the data set using existing methods such as SMOTE (Chawla et al., 2002). Then
the results were compared with the most commonly used RFE method and some other
PSO-based feature selection techniques for different continuous data sets. The results show
that the proposed method allows us to select a subset that is often significantly smaller than
that chosen by the original PCLFS method. A smaller informative feature set enables faster
processing of data with higher accuracy, especially as more computationally expensive
classification methods are used.

A SIMULATION RESULTS FOR DIFFERENT
CLASSIFICATION MODELS

Referring to the Simulation Results Section, Figs. A1-A4 present the results of the
comparison of RFE, PCLFS, and PCLFS-ext methods for other classification models such
as LGBM_C, Decision Tree, RFC and SVM_Linear with highly imbalanced data with
90%:10% rate and a sample size of 1,000. As discussed in “Simulation Results”, it is
observed that, other than having higher model F1-scores and feature selection correct
percentages, PCLFS-ext method also selects a lower number of features for many choices of
informative features than the RFE method.
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Figure A2 Simulation results for Decision Trees-1,000 sample size. Rows represent final F1-scores, Feature selection correct percentages, and the
number of informative selected features, whereas the left-hand side column with original data and right is with SMOTE data for the Decision tree
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Figure A3 Simulation results for RFC-1,000 sample size. Rows represent final F1-scores, Feature selection correct percentages, and the number of
informative selected features, whereas the left-hand side column with original data and right is with SMOTE data for the RFC with a threshold of

0.0017.
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Figure A4 Simulation results for SVM_Linear-1,000 sample size. Rows represent final F1-scores, Feature selection correct percentages, and the
number of informative selected features, whereas the left-hand side column with original data and right is with SMOTE data for the SVM-linear

classifier with a threshold of 0.0017.
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