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Long COVID Syndrome (LCS)

m A condition in which individuals experience symptoms for weeks or
months after recovering from COVID-19.

m The need for consistent identification and treatment of Long COVID
patients
m 20-30% of COVID-19 survivors experience prolonged symptoms.
m The condition can affect multiple organ systems.
= Many are unaware of their condition.



Challenges in Predicting LCS Patients at Risk

m Ildentifying ‘known LCS’ group for classification

m Use Natural Language Processing (NLP) methodologies.
= Conduct word extraction processes.
m Perform manual refinement techniques.

m Class imbalance issue (Ratio: 0.96:0.04)

m Used rebalancing techniques
= Random Over-Sampling and Random Under-Sampling



m LCS Symptoms, Pre-COVID Symptoms, Sex, Sefi, Age Category

m Pre-COVID Symptom Scenario: within 90 days of the COVID index date
m Logistic Regression with Elastic Net Regularization

m Random Under-Sampling

m AUC - 0.94, Sensitivity - 0.95, Specificity - 0.81

m |dentified LCS group in Risk: 1124 (24.7%) LCS patients from the set of
4556 COVID-19 cases



m One or more classes are underrepresented.
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Figure: Outliers in minority class




m Create new samples for the minority class, helping to balance the
dataset.
m Challenged by outliers within the minority class.
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Figure: Re-sampled data with SMOTE



m Using a weighted average of neighbouring instances
m Improved robustness against outliers and noisy data
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Figure: Proposed method data generation



m Developing new SMOTE extensions

m Inverse distance between the median centroid of the minority class and
the nearest neighbours

Distance extSMOTE

Dirichlet extSMOTE [1]

FCRP SMOTE (Finite Chinese Restaurant Process based SMOTE)



Showcasing the weight selection of FCRP SMOTE using Finite Chinese
restaurant process with scaling parameter & = 0.1
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Figure: One instance of generating a sample - FCRP SMOTE
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& Xininority—outliers ~ Ny, 24)
B Xingjority ~ N(pg,Zo)
B Xoutiiers ~ Uniform(—10,10)

Simulation Results
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Figure: F1 Scores for 100 simulated datasets with 5-fold cross validation



m 11 imbalanced datasets in UCI repository

m diabetes, mammographic_masses, ecoli, breast_cancer, abalone_19,
isolet, car_eval_34, thyroid_sick, us_crime, oil, spectrometer

Application Results
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Figure: F1 Score Ranks for the datasets with 7 x 5-fold cross validation
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Conclusion and Future Work

m Application of NLP in conjunction with machine learning techniques
enables identifying established LCS patients at risk.

m Addressing class imbalance stands as a substantial challenge in
classification tasks.

m Qutliers within the minority class significantly affect SMOTE and related
extensions.

m The proposed methodologies exhibit superior performance compared to
existing techniques, showcasing efficacy in both simulated and
application data, even in outlier-free scenarios.

m The proposed methods will be applied to predicting Long COVID patients
in Manitoba.
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