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Long COVID Syndrome (LCS)

m A condition in which individuals experience symptoms for weeks or
months after recovering from COVID-19 [6].

m The need for consistent identification and treatment of Long COVID
patients
m 20-30% of COVID-19 survivors experience prolonged symptoms [2, 3].
m The condition can affect multiple organ systems.
= Many are unaware of their condition.



To understand the patterns and behaviour of LCS symptoms reported by
patients on the Twitter social media platform.

To establish a robust and precise model for identifying individuals
experiencing LCS in Manitoba.



Symptom Pattern Recongnition

Discovering Long COVID Symptom Patterns: Association Rule Mining and
Sentiment Analysis in Social Media Tweets [5]




m Long COVID-related Twitter data were collected from May 1, 2020, to
December 31, 2021.

m Data set of about 1M tweets.

m Used the Snscrape module in Python 3.8 [1] to scrape the tweet text
online from tweets that match the keyword “LongCovid.”

m We reduced the data set to 127,848 tweets by limiting the population to
those who suffered from COVID-19.
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Figure: Time series plot for originally obtained data and the data considered for the
study.



m Tokenization

m Stopword Removal
m Stemming
m Sentiment Analysis

m Word Collocations

= Pointwise Mutual Information (PMI)
m t-test with a frequency filter

m Chi-square test
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Symptoms
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m Used association rule mining techniques to identify frequent symptoms
and establish relationships between symptoms among patients with Long
COVID in Twitter social media discussions.

m The highest confidence level-based detection was used to determine the
most significant rules with 10% minimum confidence and 0.01% minimum
support with a positive lift.



Figure: Association rules visualization. R: rule.



Predictive Models for LCS
Long COVID Prediction in Manitoba Using Clinical Notes Data [4]




Develop a computational predictive model to identify LCS cases precisely.

m Leveraging machine learning techniques offer a promising approach to
accurately identifying and managing LCS cases.

m Potential to revolutionize the identification process of LCS, making it a
significant contribution to the medical field.

m Improving patient care and management strategies.
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Data Collection Il

m Source of Data
= Manitoba Population Research Data Repository housed at the Manitoba
Centre for Health Policy (MCHP)

m Electronic Medical Records (EMR) of COVID-19 patients pre- and
post-COVID.

= Demographic information such as age, sex, and socioeconomic factor index.
m Quantity and Quality
= A sample of the COVID-19 test-positive cohort was accessed.

m Patients who had received a COVID-19 index date from March 1, 2020, to
December 31, 2021.

= The data set was narrowed to 4556 COVID-19-positive patients with written
medical records.

m Ethical Considerations

m Data collection adhered to ethical guidelines, with measures in place to
ensure patient privacy and confidentiality.
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m The absence of a definitive diagnostic test for Long COVID Syndrome.

= Identifying the known LCS Group for classification.

m Defining the Control Group.

e
Identifying the Identifying the
known LCS grou control group

m Class imbalance issue




m Use Natural Language Processing (NLP) methodologies.

m Conducted word extraction processes.
m Out of 121 patients identified, 81 were confirmed LCS patients.
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m Who remained within the dataset for at least 90 days with no documented
medical records beyond 90 days from COVID-19 onset.

m |dentified 1945 patients.

m Class imbalance Ratio: 0.96:0.04



m Assessing post-COVID symptoms 90 days after the COVID-19 index
date.

m Pre-COVID symptoms
symptoms within 90 days before the COVID-19 index date.

symptoms within one year before the COVID-19 index date.

m Extracted non-negated LCS-related symptoms by referring to a
predetermined list [5].

= Using ‘Negex’ allowed us to filter out all negated medical terms from the
EMRs of patients.



m Supervised machine learning

m Train-test split

m Resampling Techniques

m Random Over-sampling

= Random Under-sampling
m Binary classification methods

m Logistic Regression
m Logistic Regression with Elastic Net Regularization for Classification

m Random Forest Classification

m Cross-validation and hyperparameter optimization techniques
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Model Results

Table: Identified LCS patient counts and percentages with model accuracy measures

Pre-COVID Re-sampling | Classification | NoLCS Lcs CTthJanltls_((:/S)
ss)ér:rp‘);c:g Dataset Technique Method Counts (%) | Counts (%) | (Development + AUC | Sensitivity | Specificity

Application)

Development Dataset 1945 (96%) 81 (4%)
Baseline (Withoot | L20ETE 1657 (65%) | 873 (35%) | 954 (20.9%) | 0.87 085 0.82
Ro-sampiing) | Elastic Net 1857 (73%) | 673 (27%) | 754 (165%) | 0.93 0.85 0.91
Random Forest | 1656 (65%) | 874 (35%) | 955 (21%) | 0.93 0.9 0.85
- Togistic 1912 (76%) | 618 (24%) | 699 (153%) | 0.88 085 0.86
90 days A%p"cam” o RaS”d"ml. Efastic Net 1689 (67%) | 841 (33%) | 922 (20.2%) | 0.93 0.9 0.83
ataset Ver-Sampiing  ~mandom Forest | 1779 (70%) | 751 (30%) | 832 (18.3%) 0.9 0.85 0.84
Logistic 1480 (58%) | 1050 (42%) | 1131 (24.8%) | 0.66 07 0.71
Undt . [Elastic Net 1487 (59%) | 1043 (41%) | 1124 (24.7%) | 0.94 0.95 0.81
PiING | "Random Forest | 1659 (66%) | 871 (34%) | 952 (20.9%) | 0.93 09 0.86
Development Dataset 1592 (95%) 81 (5%)

Baseline (Without | LO0S1E 1825 (72%) | 705 (28%) | 786 (18.7%) | 0.69 0.69 0.88
Ro-sompling) | E1asTe Net 1459 (58%) | 1071 (42%) | 1152 (27.4%) | 0.86 0.85 0.84
Random Forest | 1225 (48%) | 1305 (52%) | 1386 (33%) | 0.84 085 0.79
t1vear | Aoplication Random Logistic 1626 (64%) | 904 (36%) | 985 (23.4%) | 0.66 0.69 0.79
y " Over Sammi Elastic Net 1753 (69%) | 777 (31%) | 858 (204%) | 0.75 077 0.84
ataset Ver-Samping  mandom Forest | 1347 (53%) | 1183 (47%) | 1264 (30.1%) | 0.87 0.85 0.79
Random Togistic 1594 (63%) | 936 (37%) | 1017 (24.2%) | 0.79 0.69 0.84
Under Sampling |_E12StC Net 1621 (64%) | 909 (36%) | 990 (23.6%) | 0.79 0.85 0.83
Random Forest | 1816 (72%) | 714 (28%) | 795 (18.9%) | 0.89 0.85 09
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Model Results

m Pre-COVID Symptom Scenario: within 90 days prior to the COVID index
date

m Logistic Regression with Elastic Net Regularization
m Random Under-Sampling
m AUC - 0.94, Sensitivity - 0.95, Specificity - 0.81

m Identified LCS group in Risk: 1124 (24.7%) LCS patients from the set of
4556 COVID-19 cases

m Most Important Features: Breathing/lung issues, Fatigue, Chest pain,
Brain fog, Dizziness, Cough, Age group 70-79
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Discussion

m Using natural language processing to identify LCS symptoms patterns
and initial confirmed LCS patients.

m Applying machine learning models addresses a significant challenge
within the healthcare sector.

m The outcomes of this approach underscore its potential to accurately
identify individuals prone to LCS, with higher accuracy.

m The LCS patient cohort created using this method is a valuable resource
for conducting robust assessments of LCS clinical progression.
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