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Feature Selection

Definition. Given (Xi,...,X,) and response Y, feature selection seeks an index
set S C {1,...,p} with |S| < p such that a predictor fs : RISl — ) achieves low
generalization risk.
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Motivation for Feature Selection

@ High dimensionality: In modern datasets (p > n), model complexity grows
rapidly, causing the curse of dimensionality.

@ Redundancy and noise: Irrelevant features obscure true signals and
weaken predictive accuracy.

@ Overfitting: Using all features fits noise rather than structure; selection
serves as an implicit regularization step.

@ Efficiency: Fewer parameters reduce variance and improve model stability.

@ Interpretability: A compact subset enhances understanding and scientific
insight.
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Main types of feature selection methods

Table: Differences between Filter and Wrapper

Filter Method Wrapper Method
Measure the usefulness of a subset of
Measure the relevance of features.
features.
Use statistical methods for evaluation of | Evaluates on a specific machine-learning
a subset of features. algorithm to find optimal features.
Much faster. Computationally expensive .
Less prone to over-fitting. High chance of over-fitting.
Sometimes may fail to select best
Better performance.
features.
Eg: Pearson’s Correlation, LDA, ANOVA, | Eg: Forward selection,
Chi-Square Backward elimination, RFE
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A Unified Approach for Feature Selection [5]
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|dentifying a Method that Extracts the Most Informative

Features

@ Feature selection plays a crucial role in high-dimensional settings,
improving interpretability, reducing variance, and avoiding overfitting.

@ Our objective is twofold:

@ To identify the most effective feature ordering mechanism, capable
of ranking features by informativeness.

@ To develop a unified feature subset selection procedure that
optimally balances dimensionality reduction and predictive accuracy.
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What is the Best Feature Ordering Technique? |

We compared four feature ordering techniques with the aim of identifying
the most stable and informative ranking across different data settings.

©@ Model-Based Feature Importance
o Derived from supervised models that incorporate variable regularization
or splitting criteria.
@ Coefficient-based Models: Logit or SVM-Linear - magnitude of
standardized coefficients |3;| as feature importance.
@ Tree-based Models: Decision Trees, Random Forests, Gradient
Boosting - use impurity reduction (Gini/entropy) or information gain
[4].
o These are inherently data-adaptive but may be sensitive to imbalance
and feature scaling.
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What is the Best Feature Ordering Technique? Il

@ Univariate Feature Selection (ANOVA F-Value Classification)
e Each feature is independently evaluated against the response variable
using a one-way ANOVA F-test.
o The F-statistic quantifies the ratio of between-class to within-class
variability:
_ Between-group variance

~ Within-group variance

o Higher F-values indicate stronger discriminatory power; features are
ranked accordingly.
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What is the Best Feature Ordering Technique? Il

© Absolute Correlation with the Response Variable

e For continuous or binary responses, the point-biserial correlation
coefficient rpp is computed:

Xy —Xo [mno

rpb = T 7

o Features with high |r,p| values exhibit stronger linear association with
the target variable.

e However, this approach ignores inter-feature dependencies and
nonlinear effects.
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What is the Best Feature Ordering Technique? IV

@ Summation of the Absolute Values of Principal Component
(PC) Loadings (PCL) [1]
o In Principal Component Analysis (PCA), each component is a linear
combination of the standardized variables:

PCk = win Xy + wia Xy + .o + wip X,

where wy; denotes the loading of variable j on component k.

o The absolute magnitude of wy; represents the contribution
(importance) of feature X; to the variance captured by the k-th
component.

e To assess the overall influence of a variable, we sum the absolute
loadings across the first k principal components:

Score(X, Z |wijl.
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Simulation Design

@ A Monte Carlo simulation was conducted to compare feature ranking
techniques under varying data conditions.

@ Experimental factors:

e Sample size: n € {200,500, 1000}
e Number of informative features: pins
o Class imbalance: balanced, moderate, and severe

@ Each scenario was replicated 100 times for stability and reproducibility.

@ Performance metric:

Mean number of correctly identified
Informative Selection __ informative features

Rate Pinf

@ The expected selection range corresponds to the true number of informative
features embedded in the dataset.
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Simulation Results
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mechanism by capturing joint

variance contributions. Figure: Feature selection accuracy
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Deriving the Most Informative Feature Subset

@ After establishing the most reliable ordering mechanism, we propose a
systematic subset extraction algorithm - the Principal Component
Loading Feature Selection (PCLFS) method.
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Principal Component Loading Feature Selection (PCLFS)

@ The theoretical rationale integrates variance-based ranking with
performance-based selection.

Step 1: Perform PCA on standardized training data to obtain loading
matrix Wixp.

Step 2: Compute feature importance scores Zf-;l |wijj| and order features
accordingly.

Step 3: lteratively fit a classification model (e.g., Logistic Regression)
starting from the top-ranked feature and cumulatively add one
feature at a time.

Step 4: Evaluate performance using Fl-score on the validation or test set.

Step 5: Select the subset size p* that maximizes the Fl-score:

p* = argmax F1(p).
P
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Principal Component Loading Feature Selection (PCLFS)

PCLFS

Ordered Performance Estimation

Original
ini PC loadin Feature
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Evaluation
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The PCLFS method combines the interpretability of PCA with predictive
validation, yielding a stable, data-driven approach to feature selection that
respects feature correlations and maximizes generalization performance.
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Simulation Scenarios

Variable No. of Levels Levels / Descriptions

Methods 3 RFE, PCLFS, PCLFS-Extended

Classification Models 5 Logit, SVM-Linear, Decision Trees, Random Forest (RFC), LightGBM (LGBM_C)
Training Sets 2 Original, SMOTE

Imbalance Rates 3 50%:50%, 70%:30%, 90%:10%

No. of Features 1 30

No. of Informative Features 30 1-30 (increment of 1)

Sample Sizes 2 200, 1000

Performance Evaluation Metrics 3 F1-scoremodel, Correct_Percentages, TPRg

Repeat Samples 100 Each scenario replicated 100 times
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Simulation Results
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Flgu r€: Final model Fl-scores and feature selection correct percentages for the Logit model, without SMOTE when sample

size is 1000 and threshold is 0.0017.
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SPECTF Heart Data

@ The SPECTF Heart Dataset [2, 3] is a publicly available benchmark for
diagnosing cardiac abnormalities using Single Photon Emission Computed
Tomography (SPECT) imaging.

@ Each record corresponds to one patient and is labeled as either:

e Normal, or
e Abnormal (presence of cardiac abnormality).

@ The dataset contains:

e 267 patient samples (image-derived feature sets)
@ 44 continuous diagnostic features per patient

@ Data were randomly divided into:
Training: 75% and Testing: 25%.

@ The dataset is class-imbalanced with a ratio of 80%:20%, where the
minority class represents patients with abnormal cardiac function.
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Application Results Comparison

Table: Final F1l-score comparison between RFE and proposed methods (PCLFS).
. Feature Fl-score

SMOTE Method Basic RFE PCLFS reduction%/ | (reduction)/
#Features | Fl-scores | #Features | Fl-scores | #Features | Fl-scores | (increment%) increment

Logit 44 0.6809 36 0.6957 24 0.6957 56.8% (0.0018)

LGBM 44 0.6667 27 0.6286 13 0.7027 31.8% 0.0741

TRUE | Decision Tree 44 0.5556 44 0.5556 9 0.6667 93.2% 0.1110
RFC 44 0.6486 38 0.6111 42 0.7059 59.0% 0.0731
SVM-Linear 44 0.6511 30 0.6977 12 0.7727 40.9% 0.0750

Logit 44 0.5455 30 0.5000 44 0.5455 (31.8%) 0.0455

LGBM 44 0.6250 15 0.5455 15 0.6250 0.0% 0.0795

FALSE | Decision Tree 44 0.5294 27 0.5161 9 0.5946 40.9% 0.0785
RFC 44 0.2609 9 0.3704 11 0.4444 (4.5%) 0.0740
SVM-Linear 44 0.5946 21 0.5882 37 0.6316 (36.4%) 0.0434

Surani Matharaarachchi (NYIT)

19/22



Discussion

@ Using the summation of the absolute values of principle component
loadings, features can be ordered from most informative to the least.

@ Feature ordering is entirely independent of the classification model.

@ Combined results returns “The most informative feature subset with
minimal number of features with similar performance”.

@ Proposed methods makes a reasonable improvement over RFE results.
@ Python and Digital Research Alliance of Canada facility was used.

@ An extended version of the PCLFS is published in the Journal of
PeerJ Computer Science [6].
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