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Introduction

The rapid advancement of science and technology has resulted in
increasingly complex datasets

Predictive Modeling

Make data-driven decisions

Challenges in Predictive Modeling: Class Imbalance Issue

Abnormal instances

Curse of dimensionality
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Class Imbalance Issue

Occurs when the number of
instances in different classes is
significantly disproportionate.
Examples:

Fraud Detection
Spam Detection
Medical Diagnosis
Churn Prediction

Issues:
Leads to biased models
Decreases predictive accuracy

Abnormal Instances Figure: Class imbalance with outliers in
minority class
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Objectives

Develop novel techniques for addressing class imbalance in classification
tasks.

To investigate the impact of outliers within the minority class using popular
existing methods.

To propose innovative strategies capable of mitigating the adverse effects of
outliers on class imbalance data.

To further extend our approaches to address high-dimensionality issue.

To offer empirical evidence, supported by simulated and experimental
results, that demonstrates the effectiveness of these proposed solutions in
enhancing classification performance.
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Thesis Contribution

Challenges of Imbalanced Data: Identifying Long COVID Patients

1 Discovering Long COVID Symptom Patterns: Association Rule Mining and
Sentiment Analysis in Social Media Tweets (Published) [5]

2 Long COVID Prediction in Manitoba Using Clinical Notes Data: A Machine
Learning Approach (In Review) [6]

Advancements for Imbalance Data Classification

3 Enhancing SMOTE for Imbalanced Data with Abnormal Minority Instances
Just Published!!! [9]

4 Deep-ExtSMOTE: Integrating Autoencoders for Advanced Mitigation of
Class Imbalance in High-Dimensional Data Classification (In Review) [4]
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Third Manuscript

Enhancing SMOTE for Imbalanced Data with Abnormal Minority Instances [9]
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Synthetic Minority Oversampling Technique (SMOTE)

Resampling
Balancing the Dataset:

Create new samples for the
minority class.

Technique:
Interpolate between randomly
chosen minority class samples
and their nearest neighbors.
pnew = p0 + α(p3 − p0)

Figure: SMOTE data generation
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Limitation with SMOTE

Challenged by outliers within the minority class.

Figure: Original Data Figure: Re-sampled data with SMOTE
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Proposed Solution

Technique:
Use a weighted average of
neighbouring instances.

pnew =
∑k

j=1(wj×pj )

∑k
j=1 wj

, j = 1, . . . , k

Improve robustness against
outliers and noisy data.
Learn from a more extensive
set of nearest neighbours.

Challenge:
Selecting suitable weights to
enhance resilience to outliers
and noisy data.

Figure: Proposed method data
generation
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How to Define Weights?

Distance-based approach: Higher weights for closer instances in feature
space.
Use inverse distance to the median centroid of the minority class.
Developing new SMOTE extensions:

1 Distance extSMOTE
2 Dirichlet extSMOTE [1]
3 FCRP SMOTE - SMOTE with Chinese Restaurant Process Idea
4 BGMM SMOTE - SMOTE with Bayesian Gaussian Mixture Model
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1. Distance extSMOTE

dj ∈ R is the Euclidean distance between the median centroid of the
minority class and the nearest neighbours
wj = d−1

j,norm = Normalized inverse distance

Algorithm Distance ExtSMOTE
Require: X ∈ Rn×p the features, Y ∈ {0,1}n the binary class label outputs.
Require: k ∈N the number of neighbors to select for the k -Nearest Neighbors.
Ensure: Generated data Xnew ∈ Rq×p and Ynew ∈ {0,1}q with q points created.

1: Denote by S1 the number of points labelled as the minority class and S0 the number of points labelled as the majority class.

2: Initialize Xnew and Ynew as empty vectors.

3: Obtain the median centroid (µ) of the minority class.

4: while S1 < S0 do

5: Filter D = {Xi |Yi = 1}, the set of points labeled as minority class 1.

6: Randomly choose r ∈D and find the indices of its k nearest neighbors, r1 , . . . , rk .

7: Consider the inverse distances, from µ, to each nearest neighbour as weights, wj = d−1
j

8: xnew ←
∑ (wj×xrj )

∑ wj
for all j from 1 to k .

9: ynew ← 1

10: S1 = S1 + 1

11: Append xnew to Xnew , append ynew to Ynew
12: end while
13: return Xnew ,Ynew
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1. Distance extSMOTE

(a) This scenario occurs when an outlier is chosen
as a neighbouring point.

(b) The values within parentheses indicate (dj ,wj ).

Figure: An example of creating a sample - Distance extSMOTE
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2. Dirichlet extSMOTE

The pdf of the Dirichlet distribution for a point p on the simplex:

wj = P(p|α) ∼ Dir (α1, α2, . . . , αK )
def
=

Γ(∑j αj )

∏j Γ(αj )

K

∏
j=1

p
αj−1
j (1)

Algorithm Dirichlet ExtSMOTE
1: if Type is ‘Inverse distance (D)’ then
2: Calculate the distances, D = [d1 , . . . ,dk ] from µ to each nearest neighbour and obtain the reciprocal of each distance D−1 = [ 1

d1
, . . . , 1

dk
].

Then α = D−1 ×m
3: else if Type is ‘Uniform Vector (UV)’ then
4: Generate a vector α = 1k ×m, where 1k = [1, . . . , 1]

5: else if Type is ‘Uniform Distribution (UD)’ then
6: Generate vector U of size k from uniform(0,1) distribution, then α = U ×m.
7: end if
8: Use α as parameters to the Dirichlet Distribution and generate random weights wj ∼ Dir (α)

9: xnew ← ∑ wj xrj for all j from 1 to k , as ∑ wj = 1

10: ynew ← 1

11: S1 = S1 + 1

12: Append xnew to Xnew , append ynew to Ynew
13: return Xnew ,Ynew
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2. Dirichlet extSMOTE (Inverse Distance)

(a) This scenario occurs when an outlier is chosen
as a neighbouring point.

(b) The values within parentheses indicate (dj ,wj ).

Figure: An example of creating a sample - Dirichlet extSMOTE
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3. FCRP SMOTE

Showcasing the weight selection of FCRP SMOTE using the Chinese restaurant
process concept with finite number of tables with a parameter value α = 0.1
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3. FCRP SMOTE

Algorithm FCRP SMOTE
Require: X ∈ Rn×p the features, Y ∈ {0,1}n the binary class label outputs.
Require: k ∈N the number of neighbors to select for the k -Nearest Neighbors.
Require: α ∈ R, scalar parameter to update preferences.
Ensure: Generated data Xnew ∈ Rq×p and Ynew ∈ {0,1}q with q the number of points created.

1: Denote by S1 the number of points labelled as the minority class and S0 the number of points labelled as the majority class.

2: Initialize Xnew and Ynew as empty vectors.

3: Filter D = Xi |Yi = 1, the set of points labeled as minority class 1 and obtain the median centroid (cm ) of the minority cluster.

4: while S1 < S0 do

5: Randomly choose r ∈D and find the indices of its k nearest neighbors, {r1 , . . . , rk }.
6: Consider the normalized inverse distances, from cm , to each nearest neighbour as initial preferences, P = D−1

norm and choose first nearest
neighbour with probability pi , i from 1, . . . , k .

7: for N-1 do
8: Choose the next nearest neighbour with the following updated probabilities qi ,

qi =


pi+α
1+α

, for previously chosen neighbour
pi

1+α
, for other neighbours

9: pi = qi
10: end for
11: Obtain the final preferences for each nerighbour pi as the weights wj .

12: xnew ← ∑ (wj × xrj ) for all j from 1 to k and ynew ← 1

13: S1 = S1 + 1

14: Append xnew to Xnew , append ynew to Ynew
15: end while
16: return Xnew ,Ynew
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3. FCRP SMOTE

Initial preferences = d−1
norm

wj = Final allocation probabilities

(a) This scenario occurs when an outlier is chosen
as a neighbouring point.

(b) The values within parentheses indicate (dj ,wj ).

Figure: An example of creating a sample - FCRP SMOTE

S. Matharaarachchi New Developments for Addressing Class Imbalance Issue in Classification Tasks 18 / 42



Introduction Objectives Thesis Contribution Methods & Results Conclusion References Acknowledgment

4. BGMM SMOTE

Bayesian Gaussian Mixture Models (BGMM)

A probabilistic model used for clustering

Cluster Assignment

1 Expectation Maximization:
Expectation (E-step): For each data point, the model calculates the probability of
the point belonging to each cluster
Maximization (M-step): Update the parameters of the model by maximizing the
expected log-likelihood

2 Cluster Assignment: Probabilistically assigns data points to clusters based
on the calculated probabilities.

3 Soft Assignments: This does not definitively allocate a point to a single
cluster.
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4. BGMM SMOTE

cj = Cluster assignment of the j th nearest neighbour
wj = Normalized cluster probability of the cluster which the median
centroid belongs

(a) This scenario occurs when an outlier is chosen
as a neighboring point.

(b) The values within parentheses indicate (cj ,wj ).

Figure: An example of creating a sample - BGMM SMOTE (D)
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Synthetic Data Generation

Xminority−outliers ∼ N2×2(µ
(1)
2×1,Σ

(1)
2×2)

Xmajority ∼ N2×2(µ
(2)
2×1,Σ

(2)
2×2)

Xoutliers ∼ Uniform([−10,10]2)

µ
(1)
2×1 =

[
0
0

]
2×1

,Σ
(1)
2×2 =

[
2 0
0 2

]
2×2

µ
(2)
2×1 =

[
3
4

]
2×1

,Σ
(2)
2×2 =

[
2 0
0 2

]
2×2
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Synthetic Data Generation

Figure: Comparison of resampled data
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Simulation Results (Noisy Moons)

Figure: Comparison of resampled data
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Simulation Results (Noisy Circles)

Figure: Comparison of resampled data
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Synthetic Data Generation

Figure: F1 Scores for 100 simulated datasets with 5-fold cross validation
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Application Data

Table: Characteristics of the binary class datasets used in the computational study.

No Dataset Instances Features Minority
class

Majority
class %Minority %Majority IR Presence of

LOF Outliers

1 yeast6 1484 8 EXC Remaining classes 2.36 97.64 41.40 Yes
2 yeast5 1484 8 EXC, ERL Remaining classes 2.70 97.30 36.10 Yes
3 yeast-1289vs7 947 8 VAC NUC, CYT, ERL, POX 3.17 96.83 30.57 Yes
4 yeast4 1484 8 ME2 Remaining classes 3.44 96.56 28.10 Yes
5 yeast-2vs8 483 8 POX CYT 4.14 95.86 23.15 Yes
6 glass12357vs6 214 9 6 Remaining classes 4.21 95.79 22.78 Yes
7 yeast-1458vs7 693 8 VAC NUC, ME3, ME2, POX 4.33 95.67 22.10 Yes
8 oil 937 49 minority majority 4.38 95.62 21.85 No
9 abalone9_18 731 7 9, 18 Remaining classes 5.75 94.25 16.40 Yes
10 glass12367vs5 214 9 5 Remaining classes 6.07 93.93 15.46 Yes
11 thyroid_sick 3772 52 sick healthy 6.12 93.88 15.33 Yes
12 yeast-1vs7 459 8 VAC NUC 6.54 93.46 14.30 Yes
13 us_crime 1994 100 >0.65 <=0.65 7.52 92.48 12.29 Yes
14 glass12vs5 159 9 5 1, 2 8.18 91.82 11.23 Yes
15 spectrometer 531 93 >=44 <44 8.47 91.53 10.80 Yes
16 landsat_satellite 6435 36 2 Remaining classes 9.73 90.27 9.28 Yes
17 mfeatmor0 2000 6 0, 1 Remaining classes 10.00 90.00 9.00 Yes
18 yeast3 1484 8 ME3 Remaining classes 10.98 89.02 8.10 Yes
19 mfeatmor01 2000 6 0 Remaining classes 20.00 80.00 4.00 Yes
20 glass123vs567 214 9 5, 6, 7 Remaining classes 23.83 76.17 3.20 Yes
21 parkinsons 195 22 1 0 24.62 75.38 3.06 Yes
22 habermans_survival 306 3 2 1 26.47 73.53 2.78 Yes
23 glass23567vs1 214 9 1 Remaining classes 32.71 67.29 2.06 Yes
24 breast_cancer 569 30 M B 37.26 62.74 1.68 Yes
25 banknote 1372 4 1 Remaining classes 44.46 55.54 1.25 Yes
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Application Results

Figure: F1 Score Ranks for the datasets with 100× 5-fold cross validation
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Fourth Manuscript

Deep-ExtSMOTE: Integrating Autoencoders for Advanced Mitigation of Class
Imbalance in High-Dimensional Data Classification [4]
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High-Dimensional Data

Curse of Dimensionality

A large number of features relative to the available data, “large p, small n”
problem [3].

Challenges:
Data Sparsity
Increased Model Complexity and Overfitting
Computational Challenges

Feature Reduction

A critical strategy to address the challenges of high dimensionality in class
imbalance [2, 7, 8].
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5. Deep-ExtSMOTE

Autoencoder + Dirichlet ExtSMOTE

Step 1: Train the Autoencoder
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5. Deep-ExtSMOTE

Step 2: Extract Encoded Representation
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5. Deep-ExtSMOTE

Step 3: Resampling and Classification
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Simulation Results

Figure: F1-Score distribution for 100 trials using simulated datasets with 1000 samples
and 5000 features (2000 informative), with an imbalance ratio (IR) of 3.
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Application Results

Application 1: Isolet (Continuous Binary Classification)

Dataset includes 617 continuous features, representing processed
characteristics of the audio signals.

Scenario 1: Original Isolet Dataset
Dataset includes 7797 samples, resulting in a feature-to-sample ratio of
approximately 0.0791.

Scenario 2: Reduced Isolet Dataset
Selected a subset of 1000 samples from the original 7797 samples. This
adjustment resulted in a feature-to-sample ratio of 0.617.
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Application Results

Figure: F1 Scores for the Isolet dataset
across 50 training and test splits.

Figure: F1 Scores for the reduced Isolet
dataset across 50 training and test splits.
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Application Results

Application 2: Chile (Categorical Binary Classification)

Predict the yield of 204 Chile pepper genotypes from multi-environment trials
in New Mexico, USA.

Conduct experiment by starting with 2,500 features and increasing the
number of features to 7,500.

Feature-to-sample ratio ranging from approximately 12.25 to 37.7.
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Application Results

Figure: F1 score comparison with varying feature numbers.
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Application Results

Figure: F1 score comparison with varying imbalance ratios.
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Conclusion

Class imbalance is a significant problem in classification.

Novel methods advancing imbalanced classification within machine
learning.

Effectively incorporate measures to minimize outlier effects and curse of
dimensionality.

Create more accurate and reliable predictive models.

Across diverse domains, including fraud detection, medical diagnosis,
and churn prediction.

All the computing were done using Python on Digital Research Alliance
of Canada computing cluster.
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Thank You!
Contact: matharas@myumanitoba.ca
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