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m The rapid advancement of science and technology has resulted in
increasingly complex datasets

m Predictive Modeling

m Make data-driven decisions



m The rapid advancement of science and technology has resulted in
increasingly complex datasets

m Predictive Modeling

m Make data-driven decisions

m Challenges in Predictive Modeling: Class Imbalance Issue

m Abnormal instances

m Curse of dimensionality
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Objectives

m Develop novel techniques for addressing class imbalance in classification
tasks.

m To investigate the impact of outliers within the minority class using popular
existing methods.

m To propose innovative strategies capable of mitigating the adverse effects of
outliers on class imbalance data.

m To further extend our approaches to address high-dimensionality issue.
m To offer empirical evidence, supported by simulated and experimental

results, that demonstrates the effectiveness of these proposed solutions in
enhancing classification performance.



Thesis Contribution

m Challenges of Imbalanced Data: Identifying Long COVID Patients

Discovering Long COVID Symptom Patterns: Association Rule Mining and
Sentiment Analysis in Social Media Tweets (Published) [5]

Long COVID Prediction in Manitoba Using Clinical Notes Data: A Machine
Learning Approach (In Review) [6]

m Advancements for Imbalance Data Classification

Enhancing SMOTE for Imbalanced Data with Abnormal Minority Instances
Just Published!!! [9]

Deep-ExtSMOTE: Integrating Autoencoders for Advanced Mitigation of
Class Imbalance in High-Dimensional Data Classification (In Review) [4]
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Third Manuscript

Enhancing SMOTE for Imbalanced Data with Abnormal Minority Instances [9]

Contents it availabie

Machine Learning with Applications

Journal Homepage: s olsevier comlacataimive

Enhancing SMOTE for imbalanced data with abnormal minority instances
ike Domaratzki ", Saman Muthukumarana *

ABSTRACT

mbelancsd e 1 nderpreenied

© New Developments for Addressing Class Imbalance Issue in Classification Tasks 7142



m Resampling

m Balancing the Dataset:
m Create new samples for the

nly=1)

minority class. =0 =1
m Technique:
m Interpolate between randomly e s aln
chosen minority class samples a-a

and their nearest neighbors.
B Pnew = Po + a(p3 — Po)
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Figure: SMOTE data generation



m Challenged by outliers within the minority class.
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m Technique:
m Use a weighted average of
neighbouring instances.
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m Technique:
m Use a weighted average of
neighbouring instances.
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= Improve robustness against
outliers and noisy data.

m Learn from a more extensive
set of nearest neighbours.

m Challenge:

m Selecting suitable weights to
enhance resilience to outliers
and noisy data.
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m Distance-based approach: Higher weights for closer instances in feature
space.

m Use inverse distance to the median centroid of the minority class.
m Developing new SMOTE extensions:

Distance extSMOTE

Dirichlet extSMOTE [1]

FCRP SMOTE - SMOTE with Chinese Restaurant Process Idea
BGMM SMOTE - SMOTE with Bayesian Gaussian Mixture Model



m g; € Ris the Euclidean distance between the median centroid of the
minority class and the nearest neighbours
W= dj‘1 = Normalized inverse distance

,norm

Algorithm Distance ExtSMOTE

Require: X € R"¥P the features, Y € {0, 1}" the binary class label outputs.
Require: k € N the number of neighbors to select for the k-Nearest Neighbors.
Ensure: Generated data Xpew € R9%P and Ypew € {0,1}9 with g points created.

- Denote by Sy the number of points labelled as the minority class and Sp the number of points labelled as the majority class.
. Initialize Xnew and Ynew as empty vectors.

. Obtain the median centroid (y) of the minority class.

: while § < §; do

Filter D = {X;|Y; = 1}, the set of points labeled as minority class 1.

Randomly choose r € D and find the indices of its k nearest neighbors, ry, ..., r.

Consider the inverse distances, from y, to each nearest neighbour as weights, wj = dj’1

(Wi xxr;)
xnew Z}%w for all j from 1 to k.

_

y"eW —1
Sy =8y +1
11:  Append 8" to Xpew, append y€% to Ynew

12: end while
% return Xnew, Ynew
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m The pdf of the Dirichlet distribution for a point p on the simplex:

) K
)d:ef T(% ) pgj—1 ™)

w; = P(p|la) ~ Dir(aq,a0,..., &
i = P(plar) (a1, 2 K T () L1

Algorithm Dirichlet EXtQSMOTE

1:
2:

oo R

if Type is ‘Inverse distance (D)’ then

Calculate the distances, D = [d, ..., dj] from u to each nearest neighbour and obtain the reciprocal of each distance b= [311— ,,,,, %k].
Thena =D xm
. else if Type is ‘Uniform Vector (UV)’ then
Generate a vector o = 1 x m, where 1y = [1,..., 1]
. else if Type is ‘Uniform Distribution (UD)’ then
Generate vector U of size k from uniform(0, 1) distribution, then o« = U x m.
end if
. Use o as parameters to the Dirichlet Distribution and generate random weights wj~ Dir(cx)

xew ):wjxrl. for all j from 1 to k, as L w; = 1

10: ynew 4

11: s, =5y +1

12: Append x™% to Xpew, append y™W to Ynew
13: return Xnew. Ynew




Dirichlet SMOTE - Inverse Distance
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Algorithm FCRP SMOTE

Require: X € R"¥P the features, Y € {0, 1}" the binary class label outputs.

Require: k € N the number of neighbors to select for the k-Nearest Neighbors.

Require: « € R, scalar parameter to update preferences.

Ensure: Generated data Xnew € R9%P and Ypew € {0, 1}9 with g the number of points created.

* Denote by S; the number of points labelled as the minority class and Sp the number of points labelled as the majority class.

© Initialize Xnew and Ynew as empty vectors.

. Filter D = X;|Y; = 1, the set of points labeled as minority class 1 and obtain the median centroid (cm) of the minority cluster.
* while §1 < Sj do

Randomly choose r € D and find the indices of its k nearest neighbors, {r1 Sy rk}.

Consider the normalized inverse distances, from cm, to each nearest neighbour as initial preferences, P = D,701,m and choose first nearest
neighbour with probability p;, i from 1,..., k.
for N-1 do
Choose the next nearest neighbour with the following updated probabilities g;,

o ok wh

Tta

pite for previously chosen neighbour
q; =
! % ) for other neighbours

Pj = 4qj

9 .
1 ?2 end for
11: Obitain the final preferences for each nerighbour p; as the weights wj.
12 x“eWeE(wjxxr/)foralljfrom1lokandy”e‘”e1

131 sy =5 +1

14:  Append x"®" to Xpew, append y"€% to Ynew
1 g: end while

16: return Xnew Ynew



Initial preferences = drgrm
w; = Final allocation probabilities

FCRP SMOTE - Inverse Distance
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4. BGMM SMOTE

Bayesian Gaussian Mixture Models (BGMM)
m A probabilistic model used for clustering

m Cluster Assignment

Expectation Maximization:

m Expectation (E-step): For each data point, the model calculates the probability of
the point belonging to each cluster

B Maximization (M-step): Update the parameters of the model by maximizing the
expected log-likelihood

Cluster Assignment: Probabilistically assigns data points to clusters based
on the calculated probabilities.

Soft Assignments: This does not definitively allocate a point to a single
cluster.



m ¢; = Cluster assignment of the j nearest neighbour
m w; = Normalized cluster probability of the cluster which the median

centroid belongs

BGMM SMOTE - Dirichlet
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Table: Characteristics of the binary class datasets used in the computational study.

Minority Majority Presence of

No Dataset Instances Features class class Y%Minority %Majority IR LOF Outliers
1 yeast6 1484 8 EXC Remaining classes 2.36 97.64 41.40 Yes
2 yeast5 1484 8 EXC, ERL Remaining classes 2.70 97.30 36.10 Yes
3 yeast-1289vs7 947 8 VAC NUC, CYT, ERL, POX 3.17 96.83 30.57 Yes
4 yeast4 1484 8 ME2 Remaining classes 3.44 96.56 28.10 Yes
5 yeast-2vs8 483 8 POX CYT 414 95.86 23.15 Yes
6 glass12357vs6 214 9 6 Remaining classes 4.21 95.79 22.78 Yes
7 yeast-1458vs7 693 8 VAC NUC, ME3, ME2, POX 4.33 95.67 2210 Yes
8 oil 937 49 minority majority 4.38 95.62 21.85 No
9 abalone9_18 731 7 9,18 Remaining classes 5.75 94.25 16.40 Yes
10 glass12367vs5 214 9 5 Remaining classes 6.07 93.93 15.46 Yes
11 thyroid_sick 3772 52 sick healthy 6.12 93.88 15.33 Yes
12 yeast-1vs7 459 8 VAC NUC 6.54 93.46 14.30 Yes
13 us_crime 1994 100 >0.65 <=0.65 7.52 92.48 12.29 Yes
14 glass12vs5 159 9 5 1,2 8.18 91.82 11.23 Yes
15 spectrometer 531 93 >=44 <44 8.47 91.53 10.80 Yes
16 landsat_satellite 6435 36 2 Remaining classes 9.73 90.27 9.28 Yes
17 mfeatmor0 2000 6 0,1 Remaining classes 10.00 90.00 9.00 Yes
18 yeast3 1484 8 ME3 Remaining classes 10.98 89.02 8.10 Yes
19 mfeatmor01 2000 6 0 Remaining classes 20.00 80.00 4.00 Yes
20 glass123vs567 214 9 5,6,7 Remaining classes 23.83 76.17 3.20 Yes
21 parkinsons 195 22 1 0 24.62 75.38 3.06 Yes
22 habermans_survival 306 3 2 1 26.47 73.53 2.78 Yes
23 glass23567vs1 214 9 1 Remaining classes 32.71 67.29 2.06 Yes
24 breast_cancer 569 30 M B 37.26 62.74 1.68 Yes
25 banknote 1372 4 1 Remaining classes 44.46 55.54 1.25 Yes




Application Results - Ranks of F1 Scores
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Fourth Manuscript

Deep-ExtSMOTE: Integrating Autoencoders for Advanced Mitigation of Class
Imbalance in High-Dimensional Data Classification [4]
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m Curse of Dimensionality

= A large number of features relative to the available data, “large p, small n”
problem [3].

m Challenges:

m Data Sparsity
B Increased Model Complexity and Overfitting
m Computational Challenges

m Feature Reduction

m A critical strategy to address the challenges of high dimensionality in class
imbalance [2, 7, 8].



m Autoencoder + Dirichlet ExtQSMOTE
m Step 1: Train the Autoencoder
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m Step 2: Extract Encoded Representation
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m Step 3: Resampling and Classification
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‘Simulation Results with 5000 Features - F1Score (IR = 3)
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and 5000 features (2000 informative), with an imbalance ratio (IR) of 3.



m Application 1: Isolet (Continuous Binary Classification)

m Dataset includes 617 continuous features, representing processed
characteristics of the audio signals.

m Scenario 1: Original Isolet Dataset
m Dataset includes 7797 samples, resulting in a feature-to-sample ratio of
approximately 0.0791.

m Scenario 2: Reduced Isolet Dataset

Hm Selected a subset of 1000 samples from the original 7797 samples. This
adjustment resulted in a feature-to-sample ratio of 0.617.
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m Application 2: Chile (Categorical Binary Classification)

m Predict the yield of 204 Chile pepper genotypes from multi-environment trials
in New Mexico, USA.

= Conduct experiment by starting with 2,500 features and increasing the
number of features to 7,500.

m Feature-to-sample ratio ranging from approximately 12.25 to 37.7.



Application Results (Chile) - F1 Score
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Application Results (Chile) - F1 Score
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Conclusion

m Class imbalance is a significant problem in classification.

m Novel methods advancing imbalanced classification within machine
learning.

m Effectively incorporate measures to minimize outlier effects and curse of
dimensionality.

m Create more accurate and reliable predictive models.

m Across diverse domains, including fraud detection, medical diagnosis,
and churn prediction.

m All the computing were done using Python on Digital Research Alliance
of Canada computing cluster.
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