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Recap: Regression and Classification

Key Topics Covered:
@ Difference between classification and regression tasks.

@ Common algorithms: Linear Regression, Logistic Regression, Decision
Trees, SVM.

@ Evaluating model performance: Accuracy, Precision, Recall,
RFmulMSE, R-squared, F1-Score.

@ Cross Validation.
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Today's Outline

@ Need for Regularization

@ What is Regularization?

@ Regularization Techniques — L1 and L2
@ Hands-On
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Need for Regularization: Linear Model Example
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Bias-Variance Trade-Off

@ Bias is the error due to overly simplistic assumptions in the learning
algorithm.

@ Variance is the error due to the model being too sensitive to small
fluctuations in the training data.

@ “sweet spot” - a model complex enough to learn patterns but simple
enough to generalize
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What is Overfitting?

@ Overfitting is a modeling error that occurs when a machine learning
model learns not only the underlying patterns in the training data but
also the noise and random fluctuations.

@ As a result, the model performs well on the training data but poorly
on unseen data.

@ Symptoms include high training accuracy but low test accuracy.
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What is Overfitting?
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Train MSE 0.1735 0.0176 0.0045
Test MSE 0.2021 0.0190 0.6052
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Causes of Overfitting

@ Too Complex Model: Models with a large number of parameters
relative to the amount of training data prone to overfitting.

e Limited Training Data: A small dataset increases the risk of
memorization rather than learning generalizable patterns.

@ Noise in Data: If the training data contained noise or irrelevant
patterns, the model may treat these as if they are genuine features.
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Addressing overfitting

Problem:
If we have too many features, the learned model may fit the training set
very well, but fail to generalize to new examples.

Solutions:
© Cross Validation

@ More data

© Reduce the number of features

e Manually select which features to keep.
o Model selection algorithm (later in the course).

© Regularization
e shrinkage in statistics

Surani Matharaarachchi (UoM) March 2025




Teaching Session - Regularization
0000000080001 ) )

Regularization

Regularization involves modifying the loss function L by introducing an
additional term that penalizes some specified properties of the model
parameters.

Lreg(8) = L(B) + AR(P), (1)

@ A is a scalar that is called regularization parameter that gives the
weight (or importance) of the regularization term.

@ This added penalty term helps to control the complexity of the model
and prevent overfitting.
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Regularization

@ Regularization Methods for Linear Models

o Ridge Regression (L2 Regularization)

o LASSO Regression (L1 Regularization)
o Elastic Net Regularization (Combination of L1 and L2)

@ Regularization Methods for Neural Networks (later in the course)

o L2 Regularization (Weight Decay)

o L1 Regularization (Sparse Regularization)

Dropout

Early Stopping

Batch Normalization (acts as a form of regularization)
Data Augmentation (for increasing generalization)
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LASSO Regression (L1 Regularization)

To prevent extreme values in the model parameters, we incorporate a

regularization term that penalizes large magnitudes. In this case, we use
RSS as our loss function.

Regularized Loss Function:

Liasso(B) = Z(J’i — 92+ 2 1Bl (2)

where y; = flo — S By

Finding the model parameters 8; asso that minimize the L regularized
loss function is called LASSO regression.

mﬁin( L1asso)
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LASSO Regression: Strengths and Limitations

Strengths
@ Prevent overfitting by penalizing large coefficients.
@ Shrinks some coefficients to zero and yields sparse models.
@ Improves model interpretability.

@ Useful in high-dimensional settings where many features are irrelevant.

Limitations
@ Performance depends on the regularization parameter.
@ Model can be biased.
@ Sensitive to outliers.
@ Limited in capturing complex, non-linear relationships.

@ Can remove useful features.
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Ridge Regression (L2 Regularization)

Alternatively, we can choose a regularization term that penalizes the
squares of the parameter magnitudes.

Regularized Loss Function:

LRr'dge(ﬁ) — Z(yi — yAf)z + A Z ﬁjz (3)

Finding the model parameters [Sgriqze that minimize the /> regularized loss
function is called Ridge regression.

mgn(LRfdge)
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Ridge Regression: Strengths and Limitations

Strengths
@ Prevent overfitting by penalizing large coefficients.
@ Handles multicollinearity.
e Maintains all features.

@ More robust to outliers.

Limitations
@ Requires careful tuning of the regularization parameter.
@ No feature selection.
@ Can introduce bias, risking underfitting if A is too large.

@ Can be less interpretable.
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Elastic Net Regression

Elastic Net is a regularized linear regression model that combines LASSO
(L1) and Ridge (L2) penalties.

Regularized Loss Function:

n

p p
LEIastic_Net(/B) — Z(YF — ﬁ:’)z + A1 Z |/3J| + Ao Z 512 (4)
j=1 j=1

=l
To control the balance between L; and Ly penalties:

n

L Erastic_Net(B) = Z( yr)z + A[@Z 8| +(1—e 252 . (5)

=1
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Elastic Net Regression

@ Finding the model parameters Bgjastic_ Net that minimize the
regularized loss function is called Elastic net regression.

mgn (L Efastic_Net )

Interpretation:
e Balances Ridge and LASSO.
@ Useful when features are highly correlated.

@ Uses a mixing parameter « to control balance.
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Selecting the Optimal A Value

How to Choose )\?

@ A =0 results in no regularization (OLS regression).
@ A large A leads to overly simplified models (high bias, low variance).

@ The best A balances model complexity and generalization.

Common Approaches:
@ Cross-validation: Find A that minimizes validation error.
@ Grid search: Test multiple A values and compare performance.

@ Information criteria: Use AIC or BIC to guide selection.
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Applying Regularization Techniques to a Water
Conservation Dataset

Objective: Predict the target variable Dissolved Oxygen (DO)
accurately and assess the effect of regularization techniques.

Dataset: Example Dataset for Water Quality Prediction
@ Contains 100 observations with 10 scientifically meaningful features.

@ Features include temperature, pH, turbidity, nutrient levels, and
chemical demand. DO, a key indicator of water quality.
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Comparative Analysis: Comparison of Linear, Lasso, and
Ridge Regression

Click the link to the code file
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Results - Model Performance Summary

Table: Model Performance Summary

OLS Ridge LASSO
Regression Regression Regression
Train MSE 2.774 2.923 2.965
Test MSE 3.376 3.097 2.823
Train R? 0.983 0.982 0.982
Test R? 0.983 0.985 0.986
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Results - Feature Importance

Table: Feature Importance (Regression Coefficients) for DO Prediction

Feature OLS Coef Ridge Coef LASSO Coef
Temperature (°C) -2.31 -2.24 -2.14
pH -0.14 -0.08 0.00
Turbidity (NTU) -2.39 -2.36 -2.23
Conductivity (pS/cm) -23.52 -2.74 -6.09
Nitrate (mg/L) -1.65 -1.62 -1.54
Phosphate (mg/L) -2.39 -1.65 -1.84
BOD (mg/L) -4.82 -4.50 -2.81
COD (mg/L) -4.66 -5.44 -3.28
TDS (mg/L) -8.33 -2.20 0.00
Salinity (ppt) -6.43 -2.63 -0.61
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Interpretation of Regression Results

e Linear Regression:

o High accuracy (R? = 0.983), but sensitive to multicollinearity.
e Coefficient magnitudes are unstable due to correlated predictors.

e Ridge Regression:

o Slightly lower training accuracy but better generalization (Test R? =
0.985).

e L2 penalty stabilizes coefficients by shrinking them-ideal for
multicollinearity.

e LASSO Regression:

o Achieved the best test performance (MSE = 2.82, R? = 0.986).

e L1 regularization induces sparsity by eliminating less important features
(e.g., pH coefficient = 0).
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Conclusion

@ Regularization helps prevent overfitting.

@ Regularization improves generalization under multicollinearity.
@ LASSO is best for interpretability and variable selection.

@ Ridge is robust when all features are important but correlated.

@ Elastic Net balances both techniques.
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Next Class

Topics:

@ Feature Selection Techniques
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Homework Assignment

Tasks:
@ Implement and compare different regularization techniques on the
given real-world dataset.

@ More details about the assignment are provided in the course website.

Submission Deadline: Next class session
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