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A B S T R A C T

Imbalanced datasets are frequent in machine learning, where certain classes are markedly underrepresented
compared to others. This imbalance often results in sub-optimal model performance, as classifiers tend to favour
the majority class. A significant challenge arises when abnormal instances, such as outliers, exist within the
minority class, diminishing the effectiveness of traditional re-sampling methods like the Synthetic Minority
Over-sampling Technique (SMOTE). This manuscript addresses this critical issue by introducing four SMOTE
extensions: Distance ExtSMOTE, Dirichlet ExtSMOTE, FCRP SMOTE, and BGMM SMOTE. These methods
leverage a weighted average of neighbouring instances to enhance the quality of synthetic samples and mitigate
the impact of outliers. Comprehensive experiments conducted on diverse simulated and real-world imbalanced
datasets demonstrate that the proposed methods improve classification performance compared to the original
SMOTE and its most competitive variants. Notably, we demonstrate that Dirichlet ExtSMOTE outperforms
most other proposed and existing SMOTE variants in terms of achieving better F1 score, MCC, and PR-AUC.
Our results underscore the effectiveness of these advanced SMOTE extensions in tackling class imbalance,
particularly in the presence of abnormal instances, offering robust solutions for real-world applications.
1. Introduction

The issue of class imbalance poses a common challenge in machine
learning, where instances are unevenly distributed across different
classes. This issue is particularly prominent in real-world applications
such as medical diagnosis (Matharaarachchi et al., 2021; Mazurowski
et al., 2008), fraud detection (Yang et al., 2009), and churn predic-
tion (Zhu et al., 2018), where minority classes are of particular interest.
Imbalanced data introduces substantial obstacles for machine learning
algorithms, leading to the development of biased models that perform
poorly on the minority class.

In these imbalanced datasets, one or more classes contain signif-
icantly higher or lower instances than others. The class with more
instances is typically called the majority class, while the one with fewer
instances is termed the minority class.

This type of data can be categorized based on its imbalance ratio
(IR) (Fernández et al., 2010), which is defined as the ratio of the
number of examples in the majority class to those in the minority
class. A higher imbalance ratio indicates a greater degree of imbalance
between the classes. For example, if the class imbalance is 0.25 ∶ 0.75,
then the IR is 3. In contrast, if the imbalance is 0.05 ∶ 0.95, the IR is
19.
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(S. Muthukumarana).

This imbalance poses difficulties for traditional machine learning
methods, making it challenging to learn from such datasets effectively.
When abnormal instances are present in the minority class, the problem
is exacerbated. Outliers and noisy data can distort the feature distribu-
tion, leading to the generation of unrepresentative synthetic samples.
This, in turn, can result in models that are biased towards the majority
class and unable to predict the minority class accurately.

Many solutions have been proposed to address class imbalance;
however, a substantial research gap still exists in effectively han-
dling abnormal instances within the minority class while employing
re-balancing techniques. Most existing methods struggle to maintain
prediction accuracy when generating synthetic data in the presence of
these abnormal instances.

In this paper, we introduce four methods for handling dataset
imbalance for datasets with abnormal instances: Distance ExtSMOTE,
Dirichlet ExtSMOTE, FCRP SMOTE, and BGMM SMOTE. We conducted
experiments supported by simulated and real-world data, with a partic-
ular focus on the presence of abnormal instances in the minority class,
demonstrating the effectiveness of these proposed solutions in enhanc-
ing classification performance. Classification was performed using three
classifiers: Logistic Regression (Weisberg, 2005), K-Nearest Neighbors
https://doi.org/10.1016/j.mlwa.2024.100597
Received 30 December 2023; Received in revised form 20 September 2024; Accept
vailable online 29 October 2024 
666-8270/© 2024 The Authors. Published by Elsevier Ltd. This is an open access art
c-nd/4.0/ ). 
ed 22 October 2024

icle under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by- 

https://www.elsevier.com/locate/mlwa
https://www.elsevier.com/locate/mlwa
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
mailto:matharas@myumanitoba.ca
mailto:mdomarat@uwo.ca
mailto:saman.muthukumarana@umanitoba.ca
https://doi.org/10.1016/j.mlwa.2024.100597
https://doi.org/10.1016/j.mlwa.2024.100597
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


S. Matharaarachchi et al.

p

S
p
a

n
e
g

i
o
w
b

B
o
R

a

a

i
L
l
S
t
a
g
p

o
o
a
s

(

t
T
t

t
p

d
g
a
T
o

Machine Learning with Applications 18 (2024) 100597 
(KNN) (Cover & Hart, 1967), and Random Forest (Breiman, 2001).
We evaluated model performance using various accuracy measures,
including F1-Score, PR-AUC, and MCC. The four proposed methods
rovide alternative approaches that may be competitive with each

other under different circumstances.
The primary objectives of this manuscript are as follows:

• To provide insights into the challenges of abnormal instances
within the minority class when using SMOTE and some popular
existing extensions.

• To propose several innovative strategies capable of mitigating the
adverse effects of abnormal instances on class imbalance data.

The structure of this manuscript is organized as follows: Section 2
delves deeper into the limitations of SMOTE in the presence of ab-
normal instances, offering a comprehensive understanding of the is-
sue. It also explores various strategies and techniques proposed to
address this challenge. Section 3 presents empirical results from ex-
periments conducted to validate the effectiveness of these strategies.
ection 4 compares the results of each method using real-world ap-
lication datasets. Finally, Section 5 of this paper is evaluated with
 discussion of its contributions and limitations, whereas Section 6

provides the conclusion.

2. Literature review

To address the challenge of class imbalance, researchers have devel-
oped oversampling techniques. These methods create samples for the
minority class or remove samples from the majority class, helping to
balance the dataset by equalizing the number of data points across all
classes. One notable approach in this domain is the Synthetic Minor-
ity Over-sampling Technique (SMOTE) (Chawla et al., 2002), which
aims to address class distribution imbalance by generating artificial
samples for the minority class. SMOTE has proven successful in enhanc-
ing classifier performance on imbalanced datasets by augmenting the
representation of the minority class and expanding the training dataset.

Nonetheless, SMOTE is not without its limitations. It frequently
fails to account for crucial factors, including the distribution of mi-
ority classes and hidden noise within the dataset, as noted by Hu
t al. (2009). One notable drawback is SMOTE’s inclination to overly
eneralize the minority class, resulting in misclassifications within the

majority class and disturbing the overall equilibrium of the model, as
emphasized by Blagus and Lusa (2013). While SMOTE has proven effec-
tive in various applications, its performance can also be compromised
by abnormal instances. Abnormal instances can distort the synthetic
sample generation process, leading to suboptimal results.

Researchers have proposed several extensions to overcome the lim-
tations of the original SMOTE technique. Some of these methods focus
n enhancing the generation of synthetic data by integrating SMOTE
ith other oversampling techniques. Notable examples include com-
ining SMOTE with techniques like particle swarm optimization (Gao

et al., 2011), kernel-based approaches (Mathew et al., 2015), and
oosting (Chawla et al., 2003). Bej et al. (2021) addressed the issue of
ver-generalizing the minority class by SMOTE by employing Localized
andom Affine Shadowsampling (LoRAS).

To address the limitations of SMOTE in the presence of outliers,
researchers have developed various extensions and adaptations. These
variants aim to create synthetic samples that are robust to the influence
of outliers, focusing on more accurate and reliable models.

Borderline-SMOTE (Han et al., 2005) is a variant that focuses on the
borderline instances of the minority class. Generating synthetic samples
near the boundary between classes helps mitigate the impact of outliers,
providing better class separation.

ADASYN (Adaptive Synthetic Sampling) method (He et al., 2008)
dapts the number of synthetic samples generated for each minority

instance based on the local distribution and classification difficulty.
2 
Synthetic observations were created based on the difficulty level of
learning specific instances within the minority class.

SVM-SMOTE (Suh et al., 2017) integrates SMOTE with the Sup-
port Vector Machine (SVM) algorithm to guide the synthetic sample
generation. SVM identifies the support vectors that define the decision
boundary between classes. Synthetic samples are generated along the
support vectors, ensuring they are close to the decision boundary.

SMOTE-IPF (Sáez et al., 2015) incorporates an iterative ensemble-
based noise filtering mechanism called Iterative-Partitioning Filter to
handle noisy and borderline examples. After each iteration of synthetic
sample generation, the filter evaluates the dataset and removes outliers.
This iterative process continues until no further noise is detected,
resulting in a synthetic dataset that is free from outliers and more
representative of the minority class distribution.

Outlier-SMOTE, proposed by Turlapati and Prusty (2020), adopts
 strategy of oversampling each data point based on its distance from

other data points.
SMOTE-LOF (SMOTE combined with Local Outlier Factor) (Asniar

et al., 2022) enhances the synthetic sample generation process by
ntegrating LOF to identify and exclude outliers in the minority class.
OF calculates the local density deviation of data points to detect out-
iers. By removing these outliers before generating synthetic samples,
MOTE-LOF ensures that the synthetic data is more representative of
he minority class’s true distribution. This approach prevents the gener-
tion of synthetic samples around outliers, which could lead to poorly
eneralized synthetic samples and negatively impact the classifier’s
erformance.

SMOTE-TomekLinks (Batista et al., 2004) integrates SMOTE with
Tomek Links, a data cleaning technique that removes overlapping
instances between classes. After generating synthetic samples using
SMOTE, Tomek Links are applied to identify and remove instances near
the decision boundary, likely to be noise or outliers. This combined
approach enhances the dataset by cleaning outliers and reducing class
overlap, leading to better classifier performance.

SMOTE-ENN (Edited Nearest Neighbors) (Batista et al., 2004) com-
bines SMOTE with ENN, which removes instances misclassified by
their nearest neighbors, effectively cleaning the dataset of noise and
utliers. After generating synthetic samples with SMOTE, ENN filters
ut unreliable samples, ensuring that outliers in the minority class
re not retained. This hybrid method improves the robustness of the
ynthetic dataset.

MWMOTE (Majority Weighted Minority Oversampling Technique)
Barua et al., 2014) identifies hard-to-learn minority instances, often

outliers, and assigns them higher weights during the oversampling pro-
cess. However, it avoids generating synthetic samples directly around
hese outliers, focusing instead on more informative minority instances.
his reduces the influence of outliers on the synthetic dataset, leading
o better classification performance.

DBSMOTE (Density-Based SMOTE) (Bunkhumpornpat et al., 2012)
uses a density-based clustering approach to identify and handle outliers
in the minority class. By applying a density-based clustering algorithm,
DBSMOTE identifies sparse regions where outliers are likely to exist and
generates synthetic samples within denser regions. This method ensures
hat outliers do not adversely affect the synthetic data generation
rocess.

DSMOTE (Mahmoudi et al., 2014) is similar to DBSMOTE in using
ensity information to guide synthetic sample generation. It focuses on
enerating synthetic samples in denser regions of the minority class,
voiding sparse areas where outliers are more likely to be found.
his density-based approach helps create a more representative and
utlier-free synthetic dataset.

ProWSyn (Proximity Weighted Synthetic Oversampling)
(Barua et al., 2013) uses proximity information to guide the oversam-
pling process. It assigns weights to minority instances based on their
proximity to other instances, with outliers receiving lower weights. This
weighted approach minimizes the impact of outliers on the synthetic
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Fig. 1. Abnormal instances in the minority class.

dataset, ensuring the synthetic data remains representative of the
minority class.

Cluster SMOTE (Cieslak et al., 2006) applies clustering algorithms
to group minority instances before performing oversampling. Clusters
containing outliers are either excluded or given less importance in the
oversampling process. By generating synthetic samples within well-
defined clusters and avoiding outlier-prone clusters, Cluster SMOTE
ensures that the synthetic data accurately represents the minority class
distribution.

Gaussian SMOTE (Lee et al., 2017) generates synthetic samples
based on Gaussian distributions fitted to the minority class instances.
Outliers, which do not conform to the main data distribution, have less
influence on the Gaussian parameters, resulting in fewer synthetic sam-
ples being generated around them. This method effectively mitigates
the impact of outliers on the synthetic dataset.

One key insight from analysing existing SMOTE variants is that
many methods clean the data by removing outliers from the origi-
nal dataset. While this may seem beneficial, it necessitates the ad-
dition of more synthetic instances to rebalance the dataset. This ap-
proach can overlook the valuable information that outliers might pro-
vide, potentially reducing the robustness and accuracy of the model’s
predictions.

By exploring the outcomes of some of the most common and com-
petitive extensions (Kovács, 2019) alongside our approaches, we aim
to gain valuable insights into improving the handling of imbalanced
datasets in machine learning.

3. Methodology

3.1. Abnormal instances

In binary classification, abnormal instances refer to data points
that deviate significantly from most of the dataset or are incorrectly
labelled. These instances can be outliers, noise, or mislabelled data,
causing challenges in building accurate predictive models (Fig. 1).

An outlier is ‘‘an observation or data point that significantly deviates
from the majority of other observations in a dataset, often arousing
suspicion that a different or abnormal process may have generated
it" (Hawkins, 1980). Noise refers to data points deviating from general
patterns, while mislabelled data are incorrectly categorized instances.

In this paper, we define the outlier ratio (OR) as the ratio of the
number of outlier instances to the number of inlier instances. A higher
outlier ratio indicates a greater prevalence of outliers relative to the
inliers within the dataset. For example, an OR of approximately 0.0526
(≈ 0.05) corresponds to a 5% prevalence of outliers, and an OR of
3 
approximately 0.1111 (≈ 0.1) corresponds to a 10% prevalence of
outliers.

Abnormal instances in a dataset may reflect legitimate extreme
observations due to random fluctuations, representing inherent sam-
pling characteristics. These should be retained and treated equally in
analysis. However, these abnormal instances might not be useful for
extensively generating new synthetic instances. For instance, abnormal
instances may distort the dataset in medical diagnosis, misleading
algorithms and biasing predictions. These instances, residing at the
data’s edges, challenge SMOTE’s efficacy by generating unrepresen-
tative synthetic samples. Therefore, effective strategies are crucial to
applying SMOTE and ensuring reliable predictions.

3.2. Overview of SMOTE

SMOTE (Chawla et al., 2002) is a widely used and effective ap-
proach for tackling class imbalance in classification datasets. SMOTE
addresses the issue of data scarcity in the minority class by generating
synthetic samples that bridge the gap between minority class instances
in feature space. The fundamental idea behind SMOTE is to create new
synthetic instances by interpolating feature values between randomly
selected minority class instances and one of their k-nearest neighbours.

The SMOTE algorithm (Algorithm 1) follows a simple and intuitive
process. For each minority class instance, it selects k-nearest neighbours
from the minority class instances. It then creates synthetic instances
along the line segments connecting the selected instance with one
of its k-nearest neighbours. These synthetic instances introduce new
data points in the feature space and increase the representation of the
minority class.

Algorithm 1 Original SMOTE
Require: 𝑋 ∈ R𝑛×𝑝 the features.
Require: 𝑌 ∈ {0, 1}𝑛 the binary class label outputs.
Require: 𝑘 ∈ N the number of neighbors to select for the 𝑘-Nearest

Neighbors.
Ensure: Generated data 𝑋𝑛𝑒𝑤 ∈ R𝑞×𝑝 and 𝑌𝑛𝑒𝑤 ∈ {0, 1}𝑞 with 𝑞 points

created.
1: Denote by 𝑆1 the number of points labelled as the minority class

and 𝑆0 the number of points labelled as the majority class.
2: Initialize 𝑋𝑛𝑒𝑤 and 𝑌𝑛𝑒𝑤 as empty vectors.
3: while 𝑆1 < 𝑆0 do
4: Filter D = 𝑋𝑖|𝑌𝑖 = 1, the set of points labelled as minority

class 1.
5: Randomly choose 𝑟 ∈ D and find the indices of its 𝑘 nearest

neighbors.
6: Randomly choose an index 𝑟2 among these neighbors.
7: 𝑥𝑛𝑒𝑤 ← 𝛼 × 𝑥𝑟1 + (1 − 𝛼) × 𝑥𝑟2 with 𝛼 ∈ [0, 1] randomly chosen.
8: 𝑦𝑛𝑒𝑤 ← 1
9: 𝑆1 = 𝑆1 + 1

10: Append 𝑥𝑛𝑒𝑤 to 𝑋𝑛𝑒𝑤, append 𝑦𝑛𝑒𝑤 to 𝑌𝑛𝑒𝑤
11: end while
12: return 𝑋𝑛𝑒𝑤, 𝑌𝑛𝑒𝑤

The main goal of SMOTE is to balance classes by creating new
similar samples for the minority class. However, when abnormal in-
stances are part of this process, SMOTE might prioritize replicating
these abnormalities instead of the typical minority class examples. This
can lead to noisy synthetic samples that do not represent the true
characteristics of the minority class well. Abnormal instances could
make SMOTE generate new samples in data areas that do not truly
represent the minority class, affecting the model’s ability to generalize
accurately and harming its performance. Fig. 2 shows the SMOTE-
generated data based on the initial dataset displayed in Fig. 1. Within
this visualization, there are three noticeable abnormal instances, and it
is clear how these instances create an unusual data bridge between the
minority data points and the abnormal ones.
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Fig. 2. Re-sampled data with SMOTE.

3.3. Proposed methods - based on weighted average

As a solution, we propose new over-sampling techniques called
Distance ExtSMOTE, Dirichlet ExtSMOTE, FCRP SMOTE and BGMM
SMOTE, Weighted average-based Minority Over-sampling TEchniques,
which use weighted averages of nearest neighbours instead of a basic
linear combination, allowing for learning from a more extensive set
of nearest neighbours. Fig. 3 illustrates how our method modifies the
synthetic data generation process compared to the standard SMOTE
approach. In the following sections, we introduce various methods for
determining appropriate weights, 𝑤𝑗 to improve the model’s ability to
handle abnormal instances more effectively.

3.4. The distance measure

Distance is used to quantify the similarity between instances. Most
of the extensions of SMOTE, which use distance metrics, consider the
distance between the minority class instances to generate synthetic
instances (Han et al., 2005; He et al., 2008; Mahmoudi et al., 2014).
According to Feng et al. (2022), the selection of this distance does not
impact the overall performances of existing SMOTE-based techniques,
nor does the distance metric.

In contrast to these extensions, our approach involves leveraging the
distances between the median centroid and the chosen nearest neigh-
bours to determine the weights. The fundamental idea is to provide
higher weights to instances closer in feature space, thus giving them
more influence in the synthetic instance creation. This strategy proves
particularly valuable in the presence of abnormal instances within the
minority class, where minimizing their influence is essential. We opt
for the median centroid, known for its robustness in the face of outliers.
Even if the selected point is not abnormal, it is important to note that
the generation of the synthetic data point will be distributed fairly
around its neighbouring data points.

We initiate the process by determining the median centroid of the
minority class, represented as 𝜇, which is essentially the point that
serves the ‘‘center’’ of these instances in a multidimensional space. It
is calculated as the median of each feature (dimension) separately.
After that, we identify the nearest neighbours for a random instance.
These nearest neighbours, denoted as 𝑥𝑖, manifest as feature vectors
that capture the attribute values of these proximate data points. Each
𝑥𝑖 vector represents the feature values of the 𝑖th nearest neighbour. To
calculate the distance between 𝜇 and each nearest neighbour 𝑥 , we
𝑖
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use the Euclidean distance (L2 norm), a measure of the straight-line
distance between two points in Euclidean space (Eq. (1)).

𝑑(𝜇 , 𝑥𝑖) =
√

√

√

√

𝑛
∑

𝑗=1
(𝜇𝑗 − 𝑥𝑖𝑗 )2 (1)

By taking the inverse of distances, instances closer to the median
centroid receive higher weight, ensuring that the synthetic samples are
more representative of the central tendency of the minority class and
effectively minimize the effect of abnormal instances in the minority
data. It enhances the robustness and accuracy of synthetic sample
generation, contributing to improved classification performance in the
presence of imbalanced datasets with abnormal instances.

3.5. Distance ExtSMOTE

In the first proposed method, Distance ExtSMOTE, the normalized
inverse distance between the median centroid and the chosen 𝑘 nearest
neighbours is directly used as the weights (Algorithm 2).

Fig. 4 demonstrates generating a new point using our suggested
technique. In Fig. 4(b), a closer view of the data generation in Fig. 4(a)
is presented. In a typical SMOTE scenario, the new point usually falls
midway along one of the three lines. Yet, in our method, we position
the new point nearer to the minority cluster, reducing the impact of
outliers. Within Fig. 4(b), the initial blue value in parenthesis represents
the distance from the median centroid. Meanwhile, the subsequent
number exhibits the assigned weights for each neighbour, with those
closer to the centroid receiving higher weights.

Algorithm 2 Distance ExtSMOTE
Require: 𝑋 ∈ R𝑛×𝑝 the features.
Require: 𝑌 ∈ {0, 1}𝑛 the binary class label outputs.
Require: 𝑘 ∈ N the number of neighbors to select for the 𝑘-Nearest

Neighbors.
Ensure: Generated data 𝑋𝑛𝑒𝑤 ∈ R𝑞×𝑝 and 𝑌𝑛𝑒𝑤 ∈ {0, 1}𝑞 with 𝑞 points

created.
1: Denote by 𝑆1 the number of points labelled as the minority class

and 𝑆0 the number of points labelled as the majority class.
2: Initialize 𝑋𝑛𝑒𝑤 and 𝑌𝑛𝑒𝑤 as empty vectors.
3: Obtain the median centroid (𝜇) of the minority class.
4: while 𝑆1 < 𝑆0 do
5: Filter D = 𝑋𝑖|𝑌𝑖 = 1, the set of points labelled as minority

class 1.
6: Randomly choose 𝑟 ∈ D and find the indices of its 𝑘 nearest

neighbors, 𝑟1,… , 𝑟𝑘.
7: Consider the inverse distances, from 𝜇, to each nearest

neighbour as weights, 𝑤𝑗 = 𝑑−1𝑗

8: 𝑥𝑛𝑒𝑤 ←

∑

(𝑤𝑗×𝑥𝑟𝑗 )
∑

𝑤𝑗
for all 𝑗 from 1 to 𝑘.

9: 𝑦𝑛𝑒𝑤 ← 1
10: 𝑆1 = 𝑆1 + 1
11: Append 𝑥𝑛𝑒𝑤 to 𝑋𝑛𝑒𝑤, append 𝑦𝑛𝑒𝑤 to 𝑌𝑛𝑒𝑤
12: end while
13: return 𝑋𝑛𝑒𝑤, 𝑌𝑛𝑒𝑤

3.6. Dirichlet ExtSMOTE

The Dirichlet ExtSMOTE method introduces a probabilistic frame-
work to assign weights. It utilizes the Dirichlet distribution parame-
ters obtained through three distinct approaches. These parameters are
then employed as weights for each nearest neighbour in the form of
generated Dirichlet samples.
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Fig. 3. Data generation mechanisms.
Fig. 4. Distance ExtSMOTE data generation. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
3.6.1. Dirichlet distribution
The Dirichlet distribution is a multivariate probability distribu-

tion defined on the simplex, which allows us to capture the class
proportions and guide the creation of more representative synthetic in-
stances. The Dirichlet distribution is used in diverse applications across
numerous domains. It plays a fundamental role in the modelling of com-
positional data, Bayesian analysis, statistical genetics, nonparametric
inference, distribution-free tolerance intervals, multivariate analysis,
order statistics, reliability, probability inequalities, probabilistic con-
strained programming models, limit laws, delivery problems, stochastic
processes, and other areas (Ng, Tian, & Tang, 2011).

It also can be considered a distribution over probability distribu-
tions (Bela et al., 2010; Ng, Tian, & Tang, 2011). Each draw from
a Dirichlet distribution yields a vector of probabilities that can be
interpreted as a probability distribution, where each element represents
the likelihood of an outcome within a specific category or dimension.

Mathematically, the Dirichlet distribution is defined by a set of
parameters 𝛼1, 𝛼2,… , 𝛼𝐾 , where 𝐾 is the dimensionality of the prob-
ability simplex. The parameters are positive real numbers, and the
distribution is typically represented as 𝐷 𝑖𝑟(𝜶). The Dirichlet distribution
is parameterized by 𝜶 = [𝛼1, 𝛼2,… , 𝛼𝐾 ], which can be considered
pseudo-counts or prior observations.

Let 𝒑 = [𝑝1, 𝑝2,… , 𝑝𝑘] be a 𝐾-dimensional vector s.t ∀𝑗 ∶ 𝑝𝑗 ≥
0, 𝑗 = 1, 2,… , 𝑘 and ∑𝐾

𝑗=1 𝑝𝑗 = 1. If 𝛤 is the gamma function, then
the probability density function (pdf) of the Dirichlet distribution for
a point 𝒑 on the simplex is given by Bela et al. (2010):

𝑃 (𝒑|𝜶) ∼ 𝐷 𝑖𝑟(𝛼1, 𝛼2,… , 𝛼𝐾 )
def
=

𝛤 (
∑

𝑗 𝛼𝑗 )
∏

𝐾
∏

𝑝
𝛼𝑗−1
𝑗 (2)
𝑗 𝛤 (𝛼𝑗 ) 𝑗=1
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Three distinct approaches are utilized to generate Dirichlet param-
eters in the Dirichlet ExtSMOTE method. The first method involves
generating random data from a 𝑈 𝑛𝑖𝑓 𝑜𝑟𝑚(0, 1) distribution, known as the
uniform distribution approach. The second method, termed the uniform
vector approach, generates data from a unit vector of size 𝑘. Finally, the
inverse distance approach determines parameters by considering the
inverse distances between the median centroid and the chosen 𝑘 nearest
neighbors. To enhance variability with the concentration parameter,
each vector is multiplied by a scalar 𝑚. These approaches collectively
contribute to the diverse generation of Dirichlet parameters within the
Dirichlet ExtSMOTE framework.

By incorporating Dirichlet weights, the algorithm promotes the
creation of more diverse and relevant synthetic instances (Fig. 5). This
results in synthetic samples that better reflect the characteristics of the
minority class. The Dirichlet distribution’s ability to generate diverse
weights mitigates the risk of overfitting that traditional SMOTE might
face.

The algorithm (Algorithm 3) enables better generalization of clas-
sifiers on imbalanced datasets, improving performance in real-world
applications with class imbalance challenges. In the subsequent section,
we present the experimental setup and evaluation results, highlighting
the advantages of Dirichlet ExtSMOTE over standard SMOTE and other
state-of-the-art approaches in handling class imbalance.

3.7. FCRP SMOTE

The Chinese Restaurant Process (CRP) (Pitman & Picard, 2006)
stands as a foundational probabilistic concept frequently employed to
display random allocation or grouping in the domains of Bayesian
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Fig. 5. Dirichlet ExtSMOTE (Inverse Distance).
Fig. 6. FCRP SMOTE.
statistics and machine learning. FCRP SMOTE adopts the CRP concept
but integrates a predetermined number of tables, denoted as 𝑘, and
assigns initial preferences to each table.

Consider a scenario with 𝑘 nearest neighbours represented as tables
in a restaurant setting. In this framework, customers emulate the role
of developing the weights to aid in selecting a synthetic data point.
Initially, there exist specific preferences allocated to each table, which
are essentially the normalized inverse distances. When a customer
arrives, they select a table based on these probabilities. Subsequently,
after this choice, the probability for that particular table is adjusted
using an 𝛼 value, and recalculations are made for all other probabilities
in relation to that selection. This sequential process iterates for a total
of 𝑁 customers. The resulting probabilities obtained through these
iterations serve as the desired weights for each nearest neighbour
within the FCRP SMOTE methodology as shown in Algorithm 4. Fig. 6
illustrates the generation of a synthetic instance.

3.8. BGMM SMOTE

In BGMM SMOTE (A cluster-based Synthetic Minority Over-
sampling Technique), the approach relies on assigning each neighbour-
ing data point to a specific cluster. Subsequently, the algorithm assigns
weights to each nearest neighbour based on the likelihood associated
with each cluster. This method uses the clustering information to guide
the creation of synthetic instances in the minority class, considering the
likelihood estimates derived from the clusters to generate new samples
more effectively.
6 
3.9. Bayesian Gaussian mixture models with EM algorithm

In cases where abnormal instances are present within the minority
class, it is often observed that these outlier points tend to reside at a
considerable distance from the primary cluster. This also suggests that
these points may belong to a distinct cluster separate from the main
cluster where the median centroid resides. However, such disparity
in data distribution raises a fundamental challenge – determining the
number of clusters that emerge from these scattered data points. In
such scenarios, traditional clustering methods may fall short due to the
absence of prior knowledge about the data’s inherent structure.

To address this challenge effectively, we turn to a non-parametric
Bayesian approach called the Bayesian Finite Mixture Model (Roberts
et al., 1998). This approach allows us to overcome the need to specify
the number of clusters beforehand. Instead, it dynamically adapts to the
data, flexibly accommodating the varying degrees of cluster complexity
within the chosen dataset.

The likelihood function, given 𝑛 independent and identically dis-
tributed observations 𝒚𝒊 ∈ R𝑝 and a fixed number of components 𝐾, is
defined as:

L(𝜽|𝒚, 𝐾) =
𝑛
∏

𝑖=1

𝐾
∑

𝑘=1
𝜋𝑘𝑓𝑘(𝒚𝒊|𝜽𝒌) (3)

where 𝒚 are the observations from the mixture model and 𝑓𝑘() a
parametric density with parameters 𝜃𝑘 and 𝜋𝑘 is the cluster mixing
weight.

Furthermore, estimating cluster mixing weights, which define each
cluster’s relative contribution to the overall data distribution, becomes
a critical aspect of this task. In the absence of prior information,
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Algorithm 3 Dirichlet ExtSMOTE
Require: 𝑋 ∈ R𝑛×𝑝 the features.
Require: 𝑌 ∈ {0, 1}𝑛 the binary class label outputs.
equire: 𝑘 ∈ N the number of neighbors to select for the 𝑘-Nearest
Neighbors.
equire: 𝑚 ∈ N, the multiplier of the parameter of the distribution.
nsure: Generated data 𝑋𝑛𝑒𝑤 ∈ R𝑞×𝑝 and 𝑌𝑛𝑒𝑤 ∈ {0, 1}𝑞 with 𝑞 points
created.
1: Denote by 𝑆1 the number of points labelled as the minority class

and 𝑆0 the number of points labelled as the majority class.
2: Initialize 𝑋𝑛𝑒𝑤 and 𝑌𝑛𝑒𝑤 as empty vectors.
3: Obtain the median centroid (𝜇) of the minority cluster.
4: while 𝑆1 < 𝑆0 do
5: Filter D = 𝑋𝑖|𝑌𝑖 = 1, the set of points labelled as minority

class 1.
6: Randomly choose 𝑟 ∈ D and find the indices of its 𝑘 nearest

neighbors, 𝑟1,… , 𝑟𝑘.
7: if Type is ‘Inverse distance (D)’ then
8: Calculate the distances, 𝑫 = [𝑑1,… , 𝑑𝑘] from 𝜇 to each

nearest neighbour and obtain the reciprocal of each distance
𝑫−1 = [ 1

𝑑1
,… , 1

𝑑𝑘
]. Then 𝜶 = 𝑫−1 × 𝑚

9: else if Type is ‘Uniform Vector (UV)’ then
10: Generate a vector 𝜶 = 𝟏𝐤 × 𝑚, where 𝟏𝐤 = [1,… , 1]
11: else if Type is ‘Uniform Distribution (UD)’ then
12: Generate vector 𝑼 of size 𝑘 from 𝑢𝑛𝑖𝑓 𝑜𝑟𝑚(0, 1) distribution,

then 𝜶 = 𝑼 × 𝑚.
13: end if
14: Use 𝜶, as parameters to the Dirichlet Distribution and

generate random weights 𝑤𝑗 ∼ 𝐷 𝑖𝑟(𝜶)
15: 𝑥𝑛𝑒𝑤 ←

∑

𝑤𝑗𝑥𝑟𝑗 for all 𝑗 from 1 to 𝑘, as ∑

𝑤𝑗 = 1
16: 𝑦𝑛𝑒𝑤 ← 1
17: 𝑆1 = 𝑆1 + 1
18: Append 𝑥𝑛𝑒𝑤 to 𝑋𝑛𝑒𝑤, append 𝑦𝑛𝑒𝑤 to 𝑌𝑛𝑒𝑤
19: end while
20: return 𝑋𝑛𝑒𝑤, 𝑌𝑛𝑒𝑤

Bayesian methods provide an appealing solution. By introducing a prior
distribution over these cluster mixing weights, Bayesian inference is
bserved through the possibility of adapting the parameter 𝐾, which
s, in practical use cases, often unknown.

The Expectation-Maximization (EM) algorithm is an iterative tech-
nique for fitting Gaussian Mixture Models. In the context of Bayesian
Gaussian Mixture Models, the EM algorithm iterates between the Ex-
pectation (E) step and the Maximization (M) step:

1. E-step: Expectation
Estimate the posterior probability of each data point belonging
to each cluster, known as the responsibility, using the current
parameters.

2. M-step: Maximization
Update the parameters (such as means, covariances, and mixing
weights) based on the newly calculated responsibilities.

The posterior distribution with a fixed 𝐾 is represented as:

𝑝(𝜃|𝒚) ∝ 𝑝(𝜃)
𝑛
∏

𝑖=1

𝐾
∑

𝑘=1
𝜋𝑘𝑓𝑘(𝑦𝑖|𝜃𝑘)

For the weight distribution, two distinct priors are integrated:

1. Dirichlet Distribution Prior
Uses a finite mixture model with a symmetric Dirichlet prior
𝐷 𝑖𝑟(𝑒0) for the component weights:

𝜋1,… , 𝜋𝐾 ∼ 𝐷 𝑖𝑟𝐾 (𝑒0), 𝜋𝑘 ≥ 0 f or all k and
𝐾
∑

𝜋𝑘 = 1

𝑘=1
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Algorithm 4 FCRP SMOTE
Require: 𝑋 ∈ R𝑛×𝑝 the features, 𝑌 ∈ {0, 1}𝑛 the binary class label

outputs.
Require: 𝑘 ∈ N the number of neighbors to select for the 𝑘-Nearest

Neighbors.
Require: 𝛼 ∈ R, scalar parameter to update preferences.
Ensure: Generated data 𝑋𝑛𝑒𝑤 ∈ R𝑞×𝑝 and 𝑌𝑛𝑒𝑤 ∈ {0, 1}𝑞 with 𝑞 points

created.
1: Denote by 𝑆1 the number of points labelled as the minority class

and 𝑆0 the number of points labelled as the majority class.
2: Initialize 𝑋𝑛𝑒𝑤 and 𝑌𝑛𝑒𝑤 as empty vectors.
3: Filter D = 𝑋𝑖|𝑌𝑖 = 1, the set of points labelled as minority class 1

and obtain the median centroid (𝜇) of the minority cluster.
4: while 𝑆1 < 𝑆0 do
5: Randomly choose 𝑟 ∈ D and find the indices of its 𝑘 nearest

neighbors, {𝑟1,… , 𝑟𝑘}.
6: Consider the normalized inverse distances, from 𝜇, to each

nearest neighbour as initial preferences, 𝑃 = 𝑫−1
𝑛𝑜𝑟𝑚 and let the

initial selection of the nearest neighbour occur with a probability
𝑝𝑖, 𝑖 from 1,… , 𝑘.

7: for N-1 do
8: Choose the next nearest neighbour with the following

updated probabilities 𝑞𝑖,

𝑞𝑖 =

{ 𝑝𝑖+𝛼
1+𝛼 , for previously chosen neighbour
𝑝𝑖
1+𝛼 , for other neighbours

9: 𝑝𝑖 = 𝑞𝑖
10: end for
11: Weights 𝑤𝑗 are obtained from the final preferences for each

neighbour 𝑝𝑖.
12: 𝑥𝑛𝑒𝑤 ←

∑

(𝑤𝑗 × 𝑥𝑟𝑗 ) for all 𝑗 from 1 to 𝑘 and 𝑦𝑛𝑒𝑤 ← 1
13: 𝑆1 = 𝑆1 + 1
14: Append 𝑥𝑛𝑒𝑤 to 𝑋𝑛𝑒𝑤, append 𝑦𝑛𝑒𝑤 to 𝑌𝑛𝑒𝑤
15: end while
16: return 𝑋𝑛𝑒𝑤, 𝑌𝑛𝑒𝑤

2. Dirichlet Process Prior
Uses an infinite mixture model through the Dirichlet Process,
approximating the Dirichlet Process inference algorithm using a
truncated distribution, known as the Stick-breaking representa-
tion. This process allows for the flexible creation of an infinite
number of components. Consider a stick length of 1, where
𝑉𝑘 ∼ 𝐵 𝑒𝑡𝑎(1, 𝛼0) for 𝑘 = 1, 2, 3,…. The probabilities 𝜋𝑖 for each
component are calculated by the length taken away in each step
of this process (Blei & Jordan, 2006):

𝜋𝑘(𝒗) = 𝑣𝑘
𝑘−1
∏

𝑗=1
(1 − 𝑣𝑗 )

The stick-breaking process generates mixture weights from a dis-
tribution defined by the Dirichlet Process, allowing for flexibility
in handling unknown or potentially infinite numbers of clusters
in the data.

After obtaining the mixing weights, they are used for generating
ew synthetic data points, enriching the understanding of the data’s

underlying structure. In Bayesian Gaussian Mixture Models, cluster
assignment is typically ‘‘soft’’, computing the probability of a point
belonging to each cluster instead of definitively assigning it to a single
cluster. This yields posterior probabilities 𝑝(𝜃|𝒚), indicating the like-
lihood of individual data points belonging to each cluster within the

ixture model.
Fig. 7 demonstrates generating a new point using suggested BGMM

SMOTE technique. Within Fig. 7(b), the initial blue value in parenthesis
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Fig. 7. BGMM SMOTE. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Algorithm 5 BGMM SMOTE
Require: 𝑋 ∈ R𝑛×𝑝 the features.
Require: 𝑌 ∈ {0, 1}𝑛 the binary class label outputs.
Require: 𝑘 ∈ N the number of neighbors to select for the 𝑘-Nearest

Neighbors.
Ensure: Generated data 𝑋𝑛𝑒𝑤 ∈ R𝑞×𝑝 and 𝑌𝑛𝑒𝑤 ∈ {0, 1}𝑞 with 𝑞 points

created.
1: Denote by 𝑆1 the number of points labelled as the minority class

and 𝑆0 the number of points labelled as the majority class.
2: Initialize 𝑋𝑛𝑒𝑤 and 𝑌𝑛𝑒𝑤 as empty vectors.
3: Filter D = 𝑋𝑖|𝑌𝑖 = 1, the set of points labelled as minority class

1.
4: Obtain the median centroid (𝜇) of the minority cluster.
5: while 𝑆1 < 𝑆0 do
6: Randomly choose 𝑟 ∈ D and find the indices of its 𝑘 nearest

neighbors, 𝑟1,… , 𝑟𝑘.
7: Estimate the mixing weights for each cluster for each selected

data point, 𝑟1,… , 𝑟𝑘, 𝜇.
8: if Prior is ‘Dirichlet Distribution (D)’ then
9: Use Bayesian Gaussian Mixture with Dirichlet distribution

as the weight concentration prior.
10: else if Prior is ‘Dirichlet Process (DP)’ then
11: Use Bayesian Gaussian Mixture with Dirichlet Process as

the weight concentration prior.
12: end if
13: Retrieve the mixing weights 𝑤𝑗 of the cluster to which the

median centroid 𝜇 belongs.
14: 𝑥𝑛𝑒𝑤 ←

∑

(𝑤𝑗×𝑥𝑟𝑗 )
∑

𝑤𝑗
for all 𝑗 from 1 to 𝑘.

15: 𝑦𝑛𝑒𝑤 ← 1
16: 𝑆1 = 𝑆1 + 1
17: Append 𝑥𝑛𝑒𝑤 to 𝑋𝑛𝑒𝑤, append 𝑦𝑛𝑒𝑤 to 𝑌𝑛𝑒𝑤
18: end while
19: return 𝑋𝑛𝑒𝑤, 𝑌𝑛𝑒𝑤

represents the cluster to which the data point most likely belongs
to. Meanwhile, the subsequent number exhibits the assigned weights
for each neighbour, with those belonging to the same cluster as the
centroid receiving higher weights.

3.10. Role of weighting mechanism in mitigating abnormal instances

The weighting mechanism plays a critical role in reducing the
influence of abnormal instances by addressing several key aspects,
such as minimizing the influence of outliers, enhancing representative
sampling and maintaining data integrity.
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• In our methods, lower weights are assigned to such outliers due to
their greater distance from the median centroid or lower probabil-
ity of belonging to the core minority class distribution, ensuring
they have minimal impact on generating synthetic samples while
preserving the integrity and representativeness of the minority
class data.

• By giving higher weights to instances closer to and more represen-
tative of the minority class, the synthetic samples generated are
more reflective of the true distribution of the minority class. This
leads to a more accurate and robust classification performance.

• The approach ensures that the synthetic data maintains the intrin-
sic properties of the minority class without being distorted by the
extreme values introduced by abnormal instances. This is crucial
for maintaining the validity and interpretability of the synthetic
data.

• Abnormal instances are retained in our method because they may
contain valuable information that can be useful to classification
models. This retention ensures that potentially significant data is
not lost during the resampling process.

3.11. Performance measures

There are many widely accepted performance measures for binary
classification; however, not all are suitable when dealing with imbal-
anced data. In our analysis, we used three key measures: F1 Score,
PR-AUC, and MCC. Introducing the notations TP (True Positives), TN
(True Negatives), FP (False Positives), and FN (False Negatives),
Precision: 𝑇 𝑃

𝑇 𝑃+𝐹 𝑃 , which measures the accuracy of the positive pre-
dictions, indicating the proportion of true positive instances among all
instances predicted as positive.
Recall: 𝑇 𝑃

𝑇 𝑃+𝐹 𝑁 , which measures the ability of the classifier to iden-
tify all positive instances, representing the proportion of true positive
instances among all actual positive instances.

The selected measures are defined as follows:

• F1 Score: 2 × 𝑃 𝑟𝑒𝑐 𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐 𝑎𝑙 𝑙
𝑃 𝑟𝑒𝑐 𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐 𝑎𝑙 𝑙 , which is the harmonic mean of

Precision and Recall, providing a single metric that balances the
trade-off between them, especially useful when there is an uneven
class distribution.

• PR-AUC: The area under the Precision-Recall curve, which sum-
marizes the trade-off between Precision and Recall across differ-
ent thresholds.

• MCC (Matthews Correlation Coefficient):
𝑇 𝑃×𝑇 𝑁−𝐹 𝑃×𝐹 𝑁

√

(𝑇 𝑃+𝐹 𝑃 )(𝑇 𝑃+𝐹 𝑁)(𝑇 𝑁+𝐹 𝑃 )(𝑇 𝑁+𝐹 𝑁)
, which takes into account all

four confusion matrix categories and provides a balanced mea-
sure, even for imbalanced datasets.
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Fig. 8. Results comparison of one simulated dataset with two features and five abnormal instances.
4. Simulation results

4.1. Synthetic data generation

In our research, we performed an experimental study in which
we created two distinct classes using a synthetic approach based on
multivariate normal distributions. We generated data from two sets
of bi-variate normal distributions, 𝑿𝑚𝑖𝑛𝑜𝑟𝑖𝑡𝑦−𝑜𝑢𝑡𝑙 𝑖𝑒𝑟𝑠 ∼ 2(𝝁𝟏,𝜮𝟏) and
𝑿𝑚𝑎𝑗 𝑜𝑟𝑖𝑡𝑦 ∼ 2(𝝁𝟐,𝜮𝟐), representing the minority and majority classes,
respectively. The simulation results in this manuscript are obtained
using these distributions, including the means and covariances, which
were specified as follows:

𝝁𝟏 =
[

0
0

]

,𝜮𝟏 =
[

2 0
0 2

]

,𝝁𝟐 =
[

3
4

]

,𝜮𝟐 =
[

2 0
0 2

]

To accentuate the challenges posed by abnormal instances within
the minority class, we took a deliberate step to introduce data points
from a uniform distribution as outliers, 𝑿𝑜𝑢𝑡𝑙 𝑖𝑒𝑟𝑠 ∼ 𝑈 𝑛𝑖𝑓 𝑜𝑟𝑚(−10, 10).
These abnormal instances were strategically added to the minority
class to mimic scenarios where anomalous instances exist within the
underrepresented class. Fig. 8 displays the bivariate plot of the resulting
resampled data for one of these scenarios.

To assess performance across various dataset shapes, we synthet-
ically generated data using ‘make_moons’ and ‘make_circles’ libraries
library in python scikit-learn.datasets (Pedregosa et al., 2011). Figures
in the appendix A demonstrate the capacity of the proposed methods
to generate synthetic data points, effectively mitigating the influence
of abnormal instances. In contrast, SMOTE and its extensions form an
inaccurate data bridge that links these abnormal instances with normal
ones.

4.2. Simulation setup

We generated a dataset comprising 1000 samples with two features,
maintaining class imbalance ratios of 3 and 19. For an imbalance ratio
of 3, the class distribution between majority and minority is 75:25,
while for an imbalance ratio of 19, it is 95:5. We also considered two
different outlier ratios, 0.05% and 0.1% in the analysis. Our initial step
involved training classifiers without oversampling. This is the baseline
method of our results. We used three different classifiers in the analysis:
the Logistic Regression model, the K-Nearest Neighbors (KNN) classifier
and theRandom Forest classifier.
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Subsequently, we trained the models with oversampled data gener-
ated by various proposed and several well-performed SMOTE variants,
including BorderlineSMOTE, ADASYN, SMOTE-LOF (with negative out-
lier factor < −1.5 as outliers) (Asniar et al., 2022) SMOTE IPF, DB-
SMOTE, ProWSyn, DSMOTE, SMOTE TomekLinks, SMOTE ENN, cluster
SMOTE, Gaussian SMOTE. All algorithms, except for the proposed
once and most common SMOTE, SMOTE-LOF, BorderlineSMOTE, and
ADASYN, were implemented using the smote-variant python tool pack-
age (Kovács, 2019) available at https://github.com/analyticalmindsltd
/smote_variants.

Then, oversampled data was applied only to the 75% training fold
while the 25% test fold was used for validation. This process was
repeated across 100 simulation datasets to mitigate variability and
ensure robustness in our analysis.

In terms of parameterization, all sampling algorithms employ a
shared neighbourhood parameter set at 𝑘 = 5, ensuring an unbiased
comparison. This particular setting at 𝑘 = 5 is not only the most
commonly used but also serves as the prevalent standard across SMOTE
and most of its variants (Chawla et al., 2002). For the classification
models, the parameter 𝑘 in KNN is also designated as five.

We also examined several key parameters to optimize the perfor-
mance of our proposed methods. Specifically, we experimented with
various values of alpha for FCRP SMOTE (0.1 and 0.5), different
multipliers (0.01 and 100), types (distance, uniform distribution, uni-
form vector) for Dirichlet ExtSMOTE, and different priors (Dirichlet
distribution, Dirichlet Process) for BGMM SMOTE. The optimal set of
parameters, determined by the highest F1-score, was selected for each
method, ensuring we identified the most effective configurations.

These final average F1-score, PR-AUC and MCC distributions when
𝑂 𝑅 ≈ 0.05 are graphically represented in Fig. 9 , Fig. 10 and Fig. 11
respectively. The boxplots to the left of the dashed red line represent
the proposed methods. The simulation setup demonstrates that the pro-
posed methods outperform existing methods across different machine
learning classifiers, showcasing their robustness in classifier selection.
Detailed results for 𝑂 𝑅 ≈ 0.1 for different IR, and accuracy measures are
provided in Appendix B. The results show similar results across these
measures.

4.3. Sensitivity analysis of the parameters

We systematically varied the parameter of interest for each pro-
posed method while maintaining all other parameters constant. Specif-
ically, for FCRP SMOTE, we tested various alpha values ranging from
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Fig. 9. F1 Scores across 100 simulated datasets with two different imbalance ratios and an outlier ratio of 0.05 were computed for three different classifiers. On the left-hand side
of the dashed line are the results obtained from the proposed methods, while on the right-hand side are the results from existing methods. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
0.1 to 1. For Dirichlet ExtSMOTE, we experimented with different
multipliers (0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50, 100) and types (inverse
distance, uniform distribution, uniform vector). For BGMM SMOTE, we
explored different priors, including the Dirichlet distribution and the
Dirichlet Process.

We then analysed the impact of these changes on key performance
metrics, including F1-score, PR-AUC, and MCC, using three differ-
ent classifiers: Logistic Regression, KNN, and Random Forest. This
comprehensive approach allowed us to enhance the performance of
our proposed algorithms by identifying the most effective parameter
configurations. The results are detailed in Appendix C. The findings
underscore the importance of carefully tuning parameters to achieve
the best balance between model complexity and predictive accuracy in
imbalanced datasets.

5. Application results

5.1. Datasets description

We collected 25 binary-class imbalanced data sets, commonly used
in similar research scenarios, from the UCI machine learning repos-
itory (Newman et al., 1998; Pedregosa et al., 2011) to verify the
effectiveness of our proposed algorithm. These datasets have 3–100
features, 159–6435 instances, and the IR varies from 1.25 to 41.40.
10 
Detailed descriptions of the data sets are provided in Table 1. To
understand the spatial distribution of anomalies in the dataset, we used
the Local Outlier Factor (LOF) outlier detection method (Breunig et al.,
2000; Duan et al., 2007). The figures in appendix D show the principal
component plots for the first two principal components, illustrating
how the outliers are distributed within the minority class.

The proposed algorithms were also compared with the same SMOTE
extensions used in the simulation study. These comparisons allowed
us to evaluate the performance and robustness of our methods against
established techniques under varying conditions.

5.2. Experimental settings

In our experimental setup, we aimed to ensure robust model perfor-
mance by incorporating comprehensive cross-validation and calibration
steps. Cross-validation involved splitting the training data into five
subsets, training the model on four subsets, and validating it on the
remaining subset.

After the cross-validation step, we calibrated the classifiers using
isotonic regression. Calibration was performed through the ‘Calibrat-
edClassifierCV‘ method in Python, which recalibrates the predicted
probabilities to reflect the true likelihood of outcomes better. By in-
tegrating these steps, we ensured that the classifiers achieved high
accuracy and provided well-calibrated probability estimates, crucial for
reliable decision-making in imbalanced datasets.
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Fig. 10. PR-AUCs across 100 simulated datasets with two different imbalance ratios and an outlier ratio of 0.05 were computed for three different classifiers. On the left-hand side
of the dashed line are the results obtained from the proposed methods, while on the right-hand side are the results from existing methods. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
Additionally, to ensure the robustness and generalizability of our
findings, we conducted 100 iterations for each of the 25 application
datasets. This extensive iteration process allowed us to account for
variability in the results and provided a thorough evaluation of each
method’s performance across different datasets.

The rest of the experimental setup and parameter settings used in
the application setup are consistent with those in the simulation study.

Moreover, in this study, we employed a ranking mechanism to eval-
uate and compare the performance of various classification methods
based on their mean F1 scores across multiple classifiers, datasets, and
trials. Specifically, for each unique combination of classifier, dataset,
and trial, we calculated the mean F1 score for each method. Then, we
ranked these methods in descending order, with higher mean F1 scores
receiving better ranks. Ties were handled using the ‘‘min’’ method,
which assigns the minimum rank to all tied values, ensuring that the
ranks consistently reflect the best possible performance.

Fig. 12 shows the density plots of the rankings of each trial of
different datasets for different re-sampling methods. The proposed
methods are highlighted in red. The proposed density curves particu-
larly Dirichlet SMOTE, FCRP SMOTE, and BGMM SMOTE, are skewed
to the right regardless of the classifier, indicating that they achieved
higher ranks (lower values) compared to existing methods.
11 
5.2.1. Statistical analysis
This ranking was further validated using the Friedman test for sta-

tistical significance (Friedman, 1937), and post-hoc pairwise compar-
isons were performed using Dunn’s test with Holm adjustment (Dunn,
1964; Holm, 1979) to identify specific differences between methods,
ultimately providing a robust comparative analysis of classification
performance.

Tables 2, 3, and 4 present the test results for three classifiers,
sorted according to average ranks. Dirichlet SMOTE consistently ranks
first and rejects the null hypothesis (𝐻0: no difference in the ranks
of the groups being compared) every time, regardless of the classifier
used. The Dirichlet SMOTE significantly differs from other SMOTE
variants and suggested methods with all classifiers. This indicates that
Dirichlet SMOTE is the most effective method, followed closely by
FCRP SMOTE and BGMM SMOTE, showcasing their robustness across
different classifiers.

For the same experiment, Table 5, Table 6, and Table 7 compare the
average F1 scores obtained by each resampling method and the baseline
dataset. Results for other performance measures, PR-AUC and MCC are
presented in the appendix E. The tables highlight the highest F1 score
for each dataset in bold, indicating that Dirichlet SMOTE consistently
delivers superior performance across most datasets, particularly with
the Random Forest classifier. ADASYN, however, may exhibit inherent
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Fig. 11. MCCs across 100 simulated datasets with two different imbalance ratios and an outlier ratio of 0.05 were computed for three different classifiers. On the left-hand side
of the dashed line are the results obtained from the proposed methods, while on the right-hand side are the results from existing methods. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
limitations in handling certain data distributions or noise levels, as
observed in the banknote dataset.

6. Discussion

Class imbalance is a common challenge in many real-world datasets,
where one class is significantly underrepresented compared to the
other(s). In such situations, it can be beneficial to generate synthetic
data that addresses the class imbalance and minimizes the impact of
abnormal instances, especially within the minority class. Abnormal
instances in the minority class can introduce significant bias and in-
accuracies in synthetic samples, affecting the overall robustness and
representativeness of the data. To tackle this issue effectively, synthetic
data generation should be tailored to rebalance the class distribution
while simultaneously reducing the influence of extreme data points.

This manuscript explores the fundamental concept of generating
synthetic data with minimal impact from abnormal instances, recogniz-
ing its significance in various data-driven applications. By mitigating
the influence of abnormal instances, we can improve the quality of
synthetic data, ensuring that it is more reliable, dependable, and suit-
able for tasks such as machine learning, predictive modelling, and data
augmentation.

By prioritizing the creation of robust synthetic data that is balanced
and outlier-resistant, we can improve the performance of machine
12 
learning models in class imbalance problems. Upon visual inspec-
tion of our findings, we can see that the proposed tools significantly
diminish the presence of data points drifting toward abnormal in-
stances. Synthetic samples that accurately represent the minority class
without being overly influenced by abnormal instances can lead to
better generalization, more precise model predictions, and, ultimately,
more reliable decision-making in applications like fraud detection,
medical diagnosis, or rare-event forecasting. In this manuscript, we
explore various strategies and techniques to achieve this dual objec-
tive, emphasizing the significance of generating synthetic data that
minimizes the impact of abnormal instances, particularly in class im-
balance, thereby contributing to developing more effective and robust
data-driven solutions.

We have proposed several methods that offer differing approaches
to the problem. In real-world data sets, we have seen differing results
based on different approaches. In practice, it is critical for machine
learning practitioners to examine different approaches to determine if
any provide an advantage over the others.

Proposing multiple algorithms addresses the diverse characteristics
of data, enabling tailored solutions for different scenarios. Our empiri-
cal evaluation highlights the strengths of each method, demonstrating
that the optimal approach depends on the specific structure of the
data. By offering various options and tools, we empower data users to
accommodate varying complexities, dimensionalities, imbalance situa-
tions, nature of outliers, and underlying structure. Then they can use



S. Matharaarachchi et al. Machine Learning with Applications 18 (2024) 100597 
Table 1
Characteristics of the binary class datasets used in the computational study.

No Dataset Instances Features Minority
class

Majority
class

%Minority %Majority IR Presence of
LOF Outliers

1 yeast6 (Nakai, 1996) 1484 8 EXC Remaining classes 2.36 97.64 41.40 Yes
2 yeast5 (Nakai, 1996) 1484 8 EXC, ERL Remaining classes 2.70 97.30 36.10 Yes
3 yeast-1289vs7 947 8 VAC NUC, CYT, ERL, POX 3.17 96.83 30.57 Yes
4 yeast4 (Nakai, 1996) 1484 8 ME2 Remaining classes 3.44 96.56 28.10 Yes
5 yeast-2vs8 (Nakai, 1996) 483 8 POX CYT 4.14 95.86 23.15 Yes
6 glass12357vs6 (German, 1987) 214 9 6 Remaining classes 4.21 95.79 22.78 Yes
7 yeast-1458vs7 (Nakai, 1996) 693 8 VAC NUC, ME3, ME2, POX 4.33 95.67 22.10 Yes
8 oil (Lemaitre et al., 2017) 937 49 minority majority 4.38 95.62 21.85 No
9 abalone9_18 (Nash et al., 1995) 731 7 9, 18 Remaining classes 5.75 94.25 16.40 Yes
10 glass12367vs5 (German, 1987) 214 9 5 Remaining classes 6.07 93.93 15.46 Yes
11 thyroid_sick (Lemaitre et al., 2017) 3772 52 sick healthy 6.12 93.88 15.33 Yes
12 yeast-1vs7 (Nakai, 1996) 459 8 VAC NUC 6.54 93.46 14.30 Yes
13 us_crime (Lemaitre et al., 2017) 1994 100 >0.65 <=0.65 7.52 92.48 12.29 Yes
14 glass12vs5 (German, 1987) 159 9 5 1, 2 8.18 91.82 11.23 Yes
15 spectrometer (mis, 1988) 531 93 >=44 <44 8.47 91.53 10.80 Yes
16 landsat_satellite (Srinivasan, 1993) 6435 36 2 Remaining classes 9.73 90.27 9.28 Yes
17 mfeatmor0 (Duin, 2024) 2000 6 0, 1 Remaining classes 10.00 90.00 9.00 Yes
18 yeast3 (Nakai, 1996) 1484 8 ME3 Remaining classes 10.98 89.02 8.10 Yes
19 mfeatmor01 (Duin, 2024) 2000 6 0 Remaining classes 20.00 80.00 4.00 Yes
20 glass123vs567 (German, 1987) 214 9 5, 6, 7 Remaining classes 23.83 76.17 3.20 Yes
21 parkinsons (Little, 2008) 195 22 1 0 24.62 75.38 3.06 Yes
22 habermans_survival (Haberman, 1999) 306 3 2 1 26.47 73.53 2.78 Yes
23 glass23567vs1 (German, 1987) 214 9 1 Remaining classes 32.71 67.29 2.06 Yes
24 breast_cancer (Wolberg et al., 1995) 569 30 M B 37.26 62.74 1.68 Yes
25 banknote (Lohweg, 2013) 1372 4 1 Remaining classes 44.46 55.54 1.25 Yes
Fig. 12. F1 Score Ranks for the datasets with 100 × 5-fold cross validation. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
13 
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Table 2
Statistical analysis results of F1 Scores of comparative algorithms at the confidence level of 𝛼 = 0.05 based on Logistic classifier.

Method Average_Rank Distance ExtSMOTE Dirichlet ExtSMOTE FCRP SMOTE BGMM SMOTE

1 Dirichlet ExtSMOTE 4.49 Rejected – Rejected Rejected
2 BGMM SMOTE 6.37 Rejected Rejected Rejected –
3 FCRP SMOTE 7.15 Rejected Rejected – Rejected
4 Baseline 7.40 Rejected Rejected Not Rejected Rejected
5 SMOTE-ENN 7.64 Rejected Rejected Not Rejected Rejected
6 Borderline SMOTE 7.75 Rejected Rejected Rejected Rejected
7 DBSMOTE 8.46 Not Rejected Rejected Rejected Rejected
8 ProWSyn 8.60 Not Rejected Rejected Rejected Rejected
9 Distance ExtSMOTE 8.65 – Rejected Rejected Rejected
10 cluster SMOTE 8.93 Not Rejected Rejected Rejected Rejected
11 SMOTE-LOF 9.16 Rejected Rejected Rejected Rejected
12 SMOTE-IPF 9.31 Rejected Rejected Rejected Rejected
13 SMOTE-TomekLinks 9.34 Rejected Rejected Rejected Rejected
14 SMOTE 9.40 Rejected Rejected Rejected Rejected
15 DSMOTE 10.94 Rejected Rejected Rejected Rejected
16 ADASYN 12.01 Rejected Rejected Rejected Rejected
17 Gaussian SMOTE 12.42 Rejected Rejected Rejected Rejected
Table 3
Statistical analysis results of F1 Scores of comparative algorithms at the confidence level of 𝛼 = 0.05 based on KNN classifier.

Method Average_Rank Distance ExtSMOTE Dirichlet ExtSMOTE FCRP SMOTE BGMM SMOTE

1 Dirichlet ExtSMOTE 4.43 Rejected – Rejected Rejected
2 FCRP SMOTE 6.45 Rejected Rejected – Rejected
3 BGMM SMOTE 7.37 Rejected Rejected Rejected –
4 SMOTE-LOF 7.59 Rejected Rejected Rejected Not Rejected
5 SMOTE-IPF 7.64 Rejected Rejected Rejected Not Rejected
6 SMOTE-TomekLinks 7.71 Rejected Rejected Rejected Not Rejected
7 SMOTE 7.81 Rejected Rejected Rejected Not Rejected
8 Baseline 8.27 Rejected Rejected Rejected Rejected
9 Borderline SMOTE 8.48 Rejected Rejected Rejected Rejected
10 SMOTE-ENN 8.71 Rejected Rejected Rejected Rejected
11 cluster SMOTE 8.75 Rejected Rejected Rejected Rejected
12 ProWSyn 8.93 Rejected Rejected Rejected Rejected
13 Distance ExtSMOTE 10.11 – Rejected Rejected Rejected
14 ADASYN 10.19 Not Rejected Rejected Rejected Rejected
15 Gaussian SMOTE 10.42 Not Rejected Rejected Rejected Rejected
16 DBSMOTE 11.33 Rejected Rejected Rejected Rejected
17 DSMOTE 11.57 Rejected Rejected Rejected Rejected
Table 4
Statistical analysis results of F1 Scores of comparative algorithms at the confidence level of 𝛼 = 0.05 based on Random Forest classifier.

Method Average_Rank Distance ExtSMOTE Dirichlet ExtSMOTE FCRP SMOTE BGMM SMOTE

1 Dirichlet ExtSMOTE 4.55 Rejected – Rejected Rejected
2 FCRP SMOTE 6.93 Rejected Rejected – Rejected
3 Gaussian SMOTE 7.82 Rejected Rejected Rejected Rejected
4 SMOTE-LOF 7.86 Rejected Rejected Rejected Rejected
5 ProWSyn 8.09 Rejected Rejected Rejected Not Rejected
6 SMOTE-IPF 8.19 Rejected Rejected Rejected Not Rejected
7 SMOTE-TomekLinks 8.21 Rejected Rejected Rejected Not Rejected
8 SMOTE 8.25 Rejected Rejected Rejected Not Rejected
9 Borderline SMOTE 8.27 Rejected Rejected Rejected Not Rejected
10 BGMM SMOTE 8.38 Rejected Rejected Rejected –
11 cluster SMOTE 8.56 Rejected Rejected Rejected Not Rejected
12 Baseline 9.75 Rejected Rejected Rejected Rejected
13 DBSMOTE 10.27 Not Rejected Rejected Rejected Rejected
14 SMOTE-ENN 10.33 Not Rejected Rejected Rejected Rejected
15 Distance ExtSMOTE 10.41 – Rejected Rejected Rejected
16 ADASYN 10.57 Not Rejected Rejected Rejected Rejected
17 DSMOTE 12.15 Rejected Rejected Rejected Rejected
a

s
g
a

multiple accuracy measures to determine which method performs best
or particular needs as we have illustrated in the applications.

Given that results can vary significantly with different classifiers,
electing the appropriate classifier for the dataset is crucial. The choice
f classifier can greatly impact the performance and accuracy of the
odel. For example, in our study, we used three classifiers: Logistic
egression, k-Nearest Neighbors (k-NN), and Random Forest. Notably,
irichlet ExtSMOTE outperforms most other SMOTE variants in terms
f F1 score, MCC, and PR-AUC, especially with a Random Forest
lassifier.
14 
Random Forest is often more effective for imbalanced data due to
its ensemble approach, combining multiple decision trees to enhance
ccuracy and robustness. This helps capture complex patterns and

interactions within the data, which is crucial for imbalanced datasets.
Additionally, Random Forest is more resilient to outliers and noise com-
pared to Logistic Regression, which assumes linear relationships, and
k-NN, which can struggle with high-dimensional data and noise. Studies
how that Random Forest generally achieves higher accuracy and better
eneralization in imbalanced datasets compared to Logistic Regression
nd k-NN (Couronné et al., 2018; Shah et al., 2020). However, This

highlights the need to experiment with multiple classifiers and select
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Table 5
F1 Score results of 17 comparative algorithms on 25 imbalanced datasets using 100 × 5 fold cross-validation with a Logistic Regression classifier.

Dataset Distance
ExtSMOTE

Dirichlet
ExtSMOTE

BGMM
SMOTE

FCRP
SMOTE

SMOTE SMOTE
LOF

SMOTE
TomekLinks

SMOTE
ENN

SMOTE
IPF

DBSMOTE ProWSyn DSMOTE cluster
SMOTE

Gaussian
SMOTE

Borderline
SMOTE

ADASYN Baseline

yeast6 0.3812 0.3843 0.4213 0.3634 0.3065 0.3078 0.3057 0.4315 0.306 0.4157 0.2939 0.3235 0.2381 0.257 0.4192 0.2579 0.4315
yeast5 0.4065 0.4064 0.4311 0.3924 0.3637 0.3601 0.3589 0.48 0.3583 0.5557 0.3336 0.4354 0.3211 0.3128 0.4382 0.2997 0.48
yeast-1289vs7 0.1797 0.2286 0.1918 0.1738 0.1758 0.1754 0.1663 0.2071 0.1651 0.0939 0.1618 0.2079 0.2184 0.1979 0.2145 0.1645 0.2071
yeast4 0.2423 0.2858 0.3062 0.265 0.2571 0.2598 0.2604 0.2584 0.2625 0.382 0.2589 0.2478 0.2658 0.2616 0.3382 0.2399 0.2584
yeast-2vs8 0.2189 0.3927 0.2614 0.2517 0.4727 0.4704 0.448 0.5733 0.4454 0.2802 0.4979 0.6133 0.6169 0.4999 0.2075 0.1347 0.5733
glass12357vs6 0.4901 0.6299 0.5467 0.5704 0.6133 0.6133 0.6133 0.48 0.6133 0.6489 0.6133 0.4218 0.6079 0.4329 0.6133 0.6133 0.48
yeast-1458vs7 0.1656 0.1978 0.1685 0.1816 0.1696 0.1689 0.1653 0 0.1631 0.1256 0.1392 0.1592 0.1361 0.1765 0.1777 0.164 0
oil 0.5596 0.5582 0.5141 0.5197 0.4951 0.4954 0.5009 0.5598 0.5001 0.5046 0.5082 0.4509 0.4875 0.3919 0.482 0.4936 0.5598
abalone9_18 0.5101 0.5089 0.4759 0.4841 0.4245 0.4276 0.4427 0.4733 0.4426 0.5401 0.4785 0.4739 0.4609 0.3753 0.5271 0.3908 0.4733
glass12367vs5 0.4654 0.5624 0.5612 0.5015 0.5364 0.5366 0.5306 0.3733 0.5324 0.2267 0.5504 0.3438 0.4302 0.4733 0.574 0.5454 0.3733
thyroid_sick 0.5922 0.5995 0.5655 0.5814 0.5567 0.5611 0.5539 0.7067 0.5531 0.7103 0.5858 0.5894 0.6357 0.3493 0.5318 0.5198 0.7067
yeast-1vs7 0.3625 0.3536 0.3747 0.3435 0.2995 0.3001 0.303 0.1833 0.3041 0.2636 0.3019 0.3102 0.334 0.3457 0.3337 0.2969 0.1833
us_crime 0.4902 0.4986 0.5016 0.5014 0.4841 0.4832 0.48 0.4924 0.4815 0.4791 0.5 0.5171 0.5016 0.4764 0.53 0.4679 0.4924
glass12vs5 0.6381 0.7966 0.6984 0.779 0.7887 0.7874 0.7845 0.7381 0.7845 0.5017 0.7969 0.6219 0.7582 0.6566 0.7511 0.8005 0.7381
spectrometer 0.8538 0.857 0.8618 0.8549 0.8473 0.8447 0.8493 0.8617 0.8492 0.8472 0.8575 0.8284 0.8595 0.7929 0.8514 0.8334 0.8676
landsat_satellite 0.2907 0.2929 0.2923 0.2919 0.2941 0.2935 0.2936 0.0453 0.2941 0.0528 0.2978 0.1563 0.2961 0.2745 0.2934 0.2894 0.0453
mfeatmor0 0.9923 0.9931 0.9923 0.9923 0.9916 0.9923 0.9911 0.9909 0.9914 0.9923 0.9945 0.9731 0.9871 0.9764 0.9923 0.9899 0.9923
yeast3 0.7032 0.6992 0.703 0.6936 0.6425 0.6434 0.6445 0.7582 0.6446 0.7106 0.6695 0.7302 0.6445 0.6492 0.6409 0.6323 0.7582
mfeatmor01 0.9172 0.9174 0.9132 0.9157 0.9078 0.9114 0.9116 0.9239 0.9079 0.9238 0.907 0.9059 0.9062 0.8624 0.8335 0.7638 0.9258
glass123vs567 0.8303 0.8573 0.8657 0.857 0.8434 0.8421 0.8445 0.7932 0.8449 0.8401 0.8334 0.8373 0.8432 0.8315 0.8345 0.8391 0.7902
parkinsons 0.6616 0.6794 0.6677 0.6658 0.658 0.6596 0.6569 0.6752 0.6591 0.6739 0.6426 0.6344 0.6565 0.6192 0.6677 0.6678 0.6752
haber-
mans_survival

0.4874 0.5196 0.5028 0.5017 0.4981 0.5 0.4996 0.3157 0.5013 0.4924 0.5008 0.3419 0.515 0.4777 0.4859 0.5097 0.3157

glass23567vs1 0.6362 0.6494 0.6423 0.6385 0.6235 0.6247 0.6269 0.6594 0.6222 0.625 0.6323 0.6466 0.6406 0.6399 0.6462 0.642 0.6594
breast_cancer 0.9643 0.9661 0.9663 0.9647 0.9629 0.9627 0.9617 0.9664 0.9634 0.9646 0.9612 0.9318 0.9624 0.9631 0.9505 0.9501 0.9653
banknote 0.9888 0.9903 0.9902 0.9897 0.9892 0.9891 0.9892 0.9892 0.9891 0.9889 0.9894 0.9412 0.9892 0.972 0.9892 NA 0.9892
Table 6
F1 Score results of 17 comparative algorithms on 25 imbalanced datasets using 100 × 5 fold cross-validation with a K-NN classifier.

Dataset Distance
ExtSMOTE

Dirichlet
ExtSMOTE

BGMM
SMOTE

FCRP
SMOTE

SMOTE SMOTE
LOF

SMOTE
TomekLinks

SMOTE
ENN

SMOTE
IPF

DBSMOTE ProWSyn DSMOTE cluster
SMOTE

Gaussian
SMOTE

Borderline
SMOTE

ADASYN Baseline

yeast6 0.4724 0.5098 0.5153 0.5001 0.4047 0.4046 0.3992 0.4978 0.4024 0.4454 0.3615 0.4614 0.4057 0.3628 0.3985 0.362 0.4978
yeast5 0.5118 0.6008 0.5543 0.574 0.4949 0.4914 0.4845 0.6487 0.4891 0.6413 0.4287 0.5988 0.5135 0.3931 0.5397 0.4394 0.6487
yeast-1289vs7 0.1364 0.2636 0.2465 0.2231 0.2402 0.2452 0.2379 0.1943 0.2401 0.1016 0.1892 0.3036 0.2699 0.232 0.2406 0.2379 0.1943
yeast4 0.3266 0.4089 0.3771 0.3882 0.3557 0.3543 0.3662 0.2914 0.3608 0.3051 0.3177 0.3479 0.351 0.3713 0.3631 0.349 0.2914
yeast-2vs8 0.48 0.5513 0.4342 0.4188 0.4008 0.4004 0.3755 0.6033 0.3794 0.58 0.4085 0.5783 0.4442 0.413 0.3476 0.3704 0.6033
glass12357vs6 0.8 0.7783 0.658 0.7483 0.7833 0.7863 0.7917 0.7333 0.7927 0.7333 0.726 0.6811 0.7353 0.5037 0.783 0.7833 0.7333
yeast-1458vs7 0.0333 0.1732 0.0494 0.0841 0.1403 0.1403 0.1426 0.04 0.1472 0.1071 0.1591 0.1204 0.1545 0.1238 0.1399 0.1326 0.04
oil 0.4897 0.6003 0.5557 0.563 0.5698 0.5725 0.5722 0.5463 0.5732 0.5927 0.5659 0.3487 0.5536 0.4232 0.6147 0.5614 0.5463
abalone9_18 0.3519 0.4253 0.4507 0.4432 0.4044 0.4032 0.4089 0.4205 0.4089 0.4025 0.4058 0.4292 0.3629 0.4027 0.4185 0.3804 0.4205
glass12367vs5 0.5733 0.6712 0.633 0.6707 0.6631 0.6674 0.6823 0.4171 0.6926 0.2 0.661 0.3777 0.5714 0.5552 0.6508 0.6387 0.4171
thyroid_sick 0.5249 0.5566 0.5612 0.568 0.5779 0.575 0.5737 0.5472 0.5775 0.4542 0.5461 0.4904 0.5686 0.4978 0.56 0.58 0.5472
yeast-1vs7 0.3249 0.4092 0.3348 0.3822 0.4041 0.4038 0.3936 0.4537 0.3937 0.2564 0.3545 0.3693 0.4267 0.3583 0.4304 0.3871 0.4537
us_crime 0.3877 0.4125 0.4125 0.4186 0.4059 0.4054 0.4091 0.4025 0.4048 0.3405 0.4332 0.4135 0.4094 0.4096 0.4065 0.3948 0.4025
glass12vs5 0.28 0.576 0.5293 0.5582 0.6518 0.6347 0.6679 0.3314 0.6643 0.2133 0.6611 0.2976 0.6165 0.6892 0.6443 0.6577 0.3314
spectrometer 0.8018 0.8747 0.7645 0.8329 0.8416 0.8461 0.8492 0.836 0.8469 0.8107 0.824 0.8039 0.8242 0.8754 0.7935 0.8223 0.8478
landsat_satellite 0.6546 0.7056 0.6607 0.6837 0.7011 0.7011 0.6969 0.7029 0.6979 0.7012 0.6865 0.515 0.6925 0.6032 0.6871 0.6946 0.7029
mfeatmor0 0.9923 0.9933 0.9923 0.9923 0.9847 0.9888 0.986 0.9899 0.9868 0.9923 0.9885 0.9498 0.9876 0.9646 0.9923 0.9875 0.9923
yeast3 0.714 0.7359 0.7478 0.7421 0.7116 0.712 0.7168 0.7572 0.7147 0.6762 0.7589 0.7428 0.6825 0.7151 0.6325 0.6865 0.7572
mfeatmor01 0.9488 0.9501 0.9505 0.9479 0.9453 0.9452 0.9462 0.9509 0.9461 0.9375 0.9453 0.9357 0.9418 0.9422 0.919 0.8869 0.9559
glass123vs567 0.8628 0.8753 0.8704 0.8716 0.8542 0.8528 0.8552 0.8561 0.8523 0.8512 0.8709 0.8253 0.8479 0.8703 0.843 0.8441 0.8578
parkinsons 0.8586 0.8601 0.8446 0.8566 0.8283 0.8304 0.8278 0.7668 0.8344 0.7293 0.8062 0.7379 0.8318 0.8382 0.8493 0.8645 0.7668
haber-
mans_survival

0.2906 0.4161 0.3847 0.3847 0.4123 0.4118 0.4054 0.1628 0.4145 0.2838 0.4458 0.3086 0.3882 0.455 0.4118 0.4159 0.1628

glass23567vs1 0.7238 0.7536 0.7348 0.7375 0.714 0.7136 0.7146 0.6828 0.7127 0.6651 0.6875 0.6636 0.7361 0.6807 0.7195 0.7283 0.6828
breast_cancer 0.947 0.9544 0.9493 0.9487 0.9473 0.948 0.9455 0.9438 0.948 0.9432 0.9453 0.9219 0.9455 0.9439 0.9382 0.9385 0.9434
banknote 0.9984 0.9987 0.9984 0.9984 0.9984 0.9984 0.9984 0.9984 0.9984 0.9984 0.9982 0.947 0.9984 0.9859 0.9984 NA 0.9984
E

the one that best captures the underlying patterns in the data, ensuring
obust and reliable outcomes.

Use of synthetic data has possible implications for safety and bias.
his is especially relevant when working with human data, including
edical and social data. There is evidence of bias that can be in-

roduced into systems for the related problem of data augmentation
e.g., (Jain et al., 2018)). Additionally, it has been observed that tools
uch as up- and down-sampling and augmentation are potential tools to
ombat bias in datasets, though this remains challenging (Pastaltzidis

et al., 2022; Sharma et al., 2020; Tomalin et al., 2021). This is an
area of ongoing research, but practitioners should exert caution when
employing tools for data imbalance or data augmentation, both with
he output variables and with informative features.

6.1. Practical implications

The enhancements to SMOTE for handling imbalanced data with ab-
normal minority instances have significant practical implications across
arious domains, including healthcare, finance, and fraud detection. By
ntroducing advanced SMOTE techniques that are specifically designed
15 
to address the presence of abnormal instances within minority classes,
our study provides robust tools for improving the accuracy and relia-
bility of predictive models. These enhanced methods facilitate better
detection of rare but critical events, such as identifying rare diseases,
detecting fraudulent transactions, or uncovering defective products. As
a result, organizations can make more informed decisions, reduce risks,
and optimize resource allocation. Implementing these methods empow-
ers data practitioners to effectively tackle complex imbalanced data
scenarios, ultimately leading to more precise and impactful outcomes.

6.2. Theoretical foundations of proposed methods

6.2.1. Distance ExtSMOTE
Using normalized inverse distances as weights in Distance

xtSMOTE provides a straightforward and effective mechanism for
generating synthetic samples that maintain the integrity of the minority
class distribution. By assigning higher weights to closer neighbours, the
method captures local density variations and preserves the underlying
structure of the minority class. This approach also mitigates the impact

of outliers, as distant outliers receive smaller weights, reducing their
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Table 7
F1 Score results of 17 comparative algorithms on 25 imbalanced datasets using 100 × 5 fold cross-validation with a Random Forest classifier.

Dataset Distance
ExtSMOTE

Dirichlet
ExtSMOTE

BGMM
SMOTE

FCRP
SMOTE

SMOTE SMOTE
LOF

SMOTE
TomekLinks

SMOTE
ENN

SMOTE
IPF

DBSMOTE ProWSyn DSMOTE cluster
SMOTE

Gaussian
SMOTE

Borderline
SMOTE

ADASYN Baseline

yeast6 0.5382 0.6059 0.6232 0.6024 0.5449 0.5516 0.5456 0.5086 0.5519 0.5124 0.4946 0.5107 0.5656 0.539 0.5272 0.5301 0.5077
yeast5 0.6019 0.6213 0.6171 0.6249 0.5287 0.533 0.5245 0.5959 0.5197 0.5845 0.5095 0.6442 0.5513 0.6196 0.529 0.5123 0.5969
yeast-1289vs7 0.0643 0.147 0.0929 0.1196 0.1771 0.1741 0.1847 0.2651 0.1751 0.1012 0.1523 0.2933 0.2773 0.3319 0.2354 0.1451 0.2632
yeast4 0.262 0.3913 0.3735 0.3816 0.4099 0.4081 0.3973 0.327 0.3923 0.3319 0.3812 0.3293 0.4313 0.3941 0.4374 0.4006 0.3307
yeast-2vs8 0.5393 0.5573 0.5014 0.4629 0.4297 0.4273 0.4202 0.5599 0.4215 0.5823 0.4859 0.5704 0.511 0.6173 0.338 0.2939 0.5601
glass12357vs6 0.6933 0.7154 0.6453 0.6329 0.6067 0.6127 0.6067 0.56 0.5993 0.6033 0.6253 0.5253 0.6107 0.6105 0.612 0.5887 0.565
yeast-1458vs7 0.0023 0.1624 0.043 0.091 0.1335 0.1279 0.1296 0.0021 0.1218 0.0026 0.1376 0.1246 0.0997 0.0441 0.1396 0.1253 0.0048
oil 0.4213 0.5253 0.4851 0.55 0.4825 0.4881 0.4949 0.4496 0.4952 0.2503 0.5758 0.4259 0.427 0.5543 0.531 0.4684 0.4538
abalone9_18 0.3747 0.4172 0.3851 0.4 0.3711 0.3707 0.3774 0.3634 0.3755 0.3975 0.3962 0.3744 0.3601 0.3823 0.3963 0.3567 0.3692
glass12367vs5 0.6526 0.8326 0.6594 0.7103 0.7207 0.7191 0.7339 0.5929 0.7345 0.7129 0.7586 0.6097 0.6606 0.7248 0.7426 0.7187 0.591
thyroid_sick 0.858 0.8835 0.8687 0.8587 0.8749 0.8704 0.8722 0.8592 0.8728 0.8551 0.8489 0.8127 0.8778 0.8694 0.8683 0.8711 0.8582
yeast-1vs7 0.1601 0.3189 0.2205 0.2946 0.3581 0.3563 0.3413 0.3519 0.3542 0.1272 0.2641 0.4023 0.3603 0.3787 0.3596 0.3132 0.3512
us_crime 0.4585 0.48 0.4607 0.4876 0.4986 0.4986 0.4958 0.4899 0.4992 0.3462 0.5187 0.4831 0.4861 0.5229 0.4981 0.4882 0.4932
glass12vs5 0.676 0.8031 0.7708 0.7831 0.7842 0.7916 0.789 0.6836 0.7862 0.7435 0.7885 0.5678 0.7306 0.782 0.785 0.7821 0.6821
spectrometer 0.8233 0.8501 0.8066 0.8283 0.8127 0.82 0.8144 0.8359 0.8128 0.8303 0.8084 0.8053 0.8116 0.82 0.8126 0.7978 0.8236
landsat_satellite 0.6514 0.6746 0.6696 0.6712 0.6828 0.6791 0.6812 0.6642 0.6812 0.6628 0.6798 0.6492 0.6867 0.6384 0.6836 0.6835 0.6641
mfeatmor0 0.9923 0.9925 0.9923 0.9923 0.9889 0.9914 0.9887 0.9891 0.9883 0.9909 0.9912 0.9528 0.9877 0.9879 0.9923 0.9871 0.9923
yeast3 0.7656 0.7866 0.7776 0.782 0.7839 0.7852 0.7845 0.759 0.7852 0.7678 0.7867 0.7521 0.783 0.7684 0.7776 0.7758 0.7602
mfeatmor01 0.9527 0.9579 0.9559 0.9522 0.9504 0.9511 0.9501 0.9533 0.95 0.9545 0.9568 0.9363 0.9484 0.9538 0.9317 0.891 0.9581
glass123vs567 0.8906 0.9037 0.8905 0.8998 0.8883 0.8882 0.8869 0.8859 0.8939 0.8871 0.8963 0.8191 0.8877 0.8898 0.8772 0.8764 0.8854
parkinsons 0.7659 0.8106 0.7976 0.8013 0.8053 0.8089 0.8093 0.7833 0.8104 0.7956 0.787 0.7176 0.8082 0.7904 0.7982 0.8069 0.7824
haber-
mans_survival

0.3903 0.4228 0.4006 0.4283 0.3855 0.3825 0.4044 0.322 0.4089 0.3415 0.4321 0.3177 0.3793 0.4566 0.3762 0.3837 0.3197

glass23567vs1 0.8147 0.8457 0.8274 0.8234 0.8177 0.818 0.8152 0.8179 0.814 0.8262 0.7899 0.8124 0.8165 0.7873 0.814 0.8107 0.8223
breast_cancer 0.9474 0.9521 0.9481 0.9493 0.9468 0.947 0.9483 0.9445 0.947 0.9471 0.946 0.9219 0.9472 0.9459 0.944 0.9497 0.9447
banknote 0.9929 0.994 0.9929 0.9935 0.9926 0.9925 0.9925 0.9922 0.9926 0.9924 0.9925 0.938 0.9926 0.9901 0.9922 NA 0.9922
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influence on synthetic samples. Consequently, synthetic instances are
more representative of the minority class, enhancing the classifier’s
bility to generalize. Normalizing the inverse distances ensures that
he sum of the weights is 1, maintaining balanced contributions from
elevant neighbours and minimizing noise. This leads to lower bias in
he synthetic samples and improved model performance on imbalanced

datasets.
This method is suitable for datasets where the minority class has

a relatively dense and well-defined structure. However, this approach
has limitations. The deterministic nature of using fixed normalized in-
verse distances can result in less diverse synthetic samples, potentially
missing the complexity of the minority class distribution.

6.2.2. Dirichlet ExtSMOTE
Using Dirichlet samples to define weights in Dirichlet ExtSMOTE,

rather than relying solely on inverse distances, offers several significant
advantages. The primary benefit is the introduction of variability in
the synthetic sample generation process. By drawing weights from a
Dirichlet distribution parameterized uniformly or by inverse distances,
the method ensures that the weights can differ each time, producing a
more diverse set of synthetic samples even for the same set of neigh-
bours. This variability helps better approximate the true underlying
distribution of the minority class, thereby significantly enhancing the
generalization capability of the classifier. The Dirichlet distribution also
ensures that the weights sum to one and are non-negative, promoting
a balanced and realistic generation of synthetic instances. This method
helps distribute synthetic samples more evenly across the feature space,
avoiding the clustering problem seen in SMOTE.

Additionally, the Dirichlet distribution provides a probabilistic
ramework that naturally emphasizes closer neighbours while main-
aining controlled randomness. This reduces the risk of overfitting to
pecific patterns in the minority class and mitigates the impact of

outliers, which are assigned lower weights due to their larger distances.
his also helps balance the bias–variance tradeoff, leading to synthetic

instances that are more representative of the minority class distribution
and ultimately improving the performance of classifiers on imbalanced
datasets.

This method is ideal for datasets where diversity among synthetic
amples is crucial and the minority class has a complex, variable
tructure. It is particularly useful when overfitting needs to be miti-
ated. However, the Dirichlet ExtSMOTE approach may struggle with
xtremely sparse datasets where the minority class instances are very
ew and far apart. In such cases, the variability in the weights might not
e sufficient to generate meaningful synthetic samples, and the overall
enefit of the method may be reduced.
 p
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6.2.3. FCRP SMOTE
Using the finite Chinese Restaurant Process (FCRP) in FCRP SMOTE

offers a sophisticated approach to generating synthetic samples by
introducing adaptive weighting through iterative probability adjust-
ments. Initially, neighbours are selected based on inverse distance
probabilities, which are dynamically adjusted with an alpha value
over multiple iterations. This method respects the natural clustering
of the minority class, enhances the diversity of synthetic samples, and
better captures the true distribution and local density variations of the
minority class while mitigating the influence of outliers. By iteratively
refining the weights, the method balances the bias–variance trade-
off, leading to more representative synthetic instances and improved
classifier performance on imbalanced datasets.

This method is well-suited for datasets where the minority class has
arying densities and complex local structures. Its iterative adjustment
echanism is beneficial for applications requiring adaptive sampling

hat reflects the nuanced distribution of the minority class. However,
his approach also has limitations. The iterative adjustment process
an be computationally intensive, especially for large datasets, due to

the repeated recalculations of probabilities. Additionally, in extremely
parse datasets where minority class instances are few and far apart,
he clustering mechanism might struggle to form meaningful clusters,
educing the effectiveness of synthetic sample generation. Despite these
hallenges, FCRP SMOTE’s adaptive mechanism provides significant
dvantages in generating high-quality synthetic samples.

6.2.4. BGMM SMOTE
Using BGMM SMOTE is advantageous because it leverages the prob-

bilistic clustering capabilities of BGMMs to generate synthetic samples
hat closely reflect the true distribution of the minority class. By using
ixing weights from the cluster where the minority median centroid

elongs, the method ensures that synthetic instances are created in
igh-density regions of the minority class. This preserves the under-
ying structure and relationships among data points, leading to more
ccurate and diverse synthetic samples. This probabilistic framework
lso mitigates the impact of outliers, enhancing the classifier’s ability
o generalize from these synthetic instances.

This method is particularly suitable for datasets where the minority
lass can be effectively modelled using Gaussian mixtures, and where
apturing the probabilistic distribution of the data is crucial. It is
deal for applications requiring detailed and accurate representation
f the minority class distribution. However, the computational com-
lexity of fitting a BGMM can be significant, particularly for large
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and high-dimensional datasets, making the process time-consuming.
Additionally, in cases where minority class instances are sparse or do
not form clear clusters, the model may struggle to capture the data
distribution accurately.

In high-dimensional spaces, distance calculations can be computa-
tionally expensive and may not capture complex relationships. Using
feature selection techniques beforehand can help mitigate the high-
imensionality issue.

The computations for this paper were performed using the resources
provided by the Digital Research Alliance of Canada (Digital Research
Alliance of Canada, 2024).

6.3. Future research directions

While our study introduces several promising methods, there are
numerous avenues for future research that could further enhance these
echniques and broaden their applications. Here are some suggestions:

• Extension to High-Dimensional Data: While our methods have
shown promising results in bivariate scenarios, real-world ap-
plications often involve high-dimensional data. Future research
should focus on adapting and optimizing these SMOTE extensions
for high-dimensional datasets.

• Integration with Ensemble Learning Techniques: Combining the
proposed SMOTE extensions with ensemble learning techniques,
such as bagging, boosting, and stacking, could further improve
classification performance. Future work could explore the synergy
between these advanced sampling methods and ensemble classi-
fiers to develop more robust and accurate models for imbalanced
datasets.

• Ethical Considerations and Bias Mitigation: As highlighted in our
discussion, the ethical implications of using synthetic data in
sensitive applications need careful consideration. Future research
should investigate techniques to identify and mitigate biases in
synthetic data generation, ensuring that the models built on such
data are fair and unbiased. This includes developing metrics and
frameworks to evaluate the ethical impact of synthetic data on
decision-making processes.

7. Conclusion

In summary, this manuscript serves as a foundational resource
or comprehensively exploring solutions to enhance the applicability
f SMOTE in the presence of abnormal instances within imbalanced
atasets. By addressing this pivotal challenge, we aim to facilitate more
obust and dependable classification in contexts where minority class
nstances hold paramount importance.
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Appendix A. Assessing performance across different dataset
shapes

To evaluate performance across various dataset shapes we used
he ‘make_moons’ and ‘make_circles’ functions from the Python scikit-
earn library to generate data (Pedregosa et al., 2011) synthetically.

The visual representation of the resulting outcomes, inclusive of an
additional outlier, is presented in Figs. A.1 and A.2, showcasing the
inal results for each dataset shape.

Appendix B. Simulation results for different accuracy measures

The box plots in Fig. B.1, Fig. B.2, and Fig. B.3 show the distribution
of the F1 scores across 100 simulated datasets, each with two different
imbalance ratios and an outlier ratio of 0.1. These F1 scores were
omputed for three different classifiers: Logistic Regression, k-Nearest
eighbors (k-NN), and Random Forest. These visual representations

provide a clear comparison of the performance variability and central
tendency of each classifier under the specified conditions.

Appendix C. Sensitivity analysis of the parameters

Sensitivity analysis was conducted to evaluate the impact of vari-
ous parameter settings on the performance of the proposed methods.
This provided insights into the stability of our methods, ensuring that
hey remain effective across a range of parameter values and dataset
haracteristics.

C.1. Parameters of Dirichlet ExtSMOTE

C.1.1. Impact of different multipliers (𝑚)

Expected Values with Multipliers
Given a vector of parameters 𝛼 = [𝛼1, 𝛼2,… , 𝛼𝑘], the expected value

for each weight 𝑤𝑖 in the Dirichlet distribution 𝐷 𝑖𝑟(𝛼) is (Ng, Tang, &
Tian, 2011):

𝐸[𝑤𝑖] =
𝛼𝑖

∑𝑘
𝑗=1 𝛼𝑗

Let the initial inverse distances be 𝑑−11 , 𝑑−12 ,… , 𝑑−1𝑘 . We define the
arameters of the Dirichlet distribution as:

𝛼𝑖 = 𝑚 ⋅ 𝑑−1𝑖

Where 𝑚 is a multiplier.
Substituting 𝛼𝑖 = 𝑚 ⋅ 𝑑−1𝑖 into the expected value formula:

𝐸[𝑤𝑖] =
𝑚 ⋅ 𝑑−1𝑖

∑𝑘
𝑗=1 𝑚 ⋅ 𝑑−1𝑗

Thus, the expected values 𝐸[𝑤𝑖] are independent of the multiplier
and depend only on the relative proportions of the inverse distances.

Expected Values with Variability and Concentration
The variance of each weight 𝑤𝑖 in the Dirichlet distribution is given

by Ng, Tang, and Tian (2011):

𝑉 𝑎𝑟(𝑤𝑖) =
𝛼𝑖(

∑𝑘
𝑗=1 𝛼𝑗 − 𝛼𝑖)

(
∑𝑘

𝑗=1 𝛼𝑗 )2(
∑𝑘

𝑗=1 𝛼𝑗 + 1)

Substituting 𝛼𝑖 = 𝑚 ⋅ 𝑑−1𝑖 into the expected value formula:
𝑘
∑

𝑗=1
𝛼𝑗 = 𝑚 ⋅

𝑘
∑

𝑗=1
𝑚 ⋅ 𝑑−1𝑗

𝑉 𝑎𝑟(𝑤𝑖) =
𝑚 ⋅ 𝑑−1𝑖 (𝑚 ⋅

∑𝑘
𝑗=1 𝑑

−1
𝑗 − 𝑚 ⋅ 𝑑−1𝑖 )

(𝑚 ⋅
∑𝑘

𝑗=1 𝑑
−1
𝑗 )2(𝑚 ⋅

∑𝑘
𝑗=1 𝑑

−1
𝑗 + 1)
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Fig. A.1. Results comparison with noisy moons dataset with one abnormal instance when noise = 0.2.
Fig. A.2. Results comparison with noisy circles dataset with one abnormal instance when noise = 0.2.
Simplifying:

𝑉 𝑎𝑟(𝑤𝑖) =
𝑚 ⋅ 𝑑−1𝑖 ⋅ 𝑚(

∑𝑘
𝑗=1 𝑑

−1
𝑗 − 𝑑−1𝑖 )

𝑚2(
∑𝑘

𝑗=1 𝑑
−1
𝑗 )2(𝑚 ⋅

∑𝑘
𝑗=1 𝑑

−1
𝑗 + 1)

=
𝑚2 ⋅ 𝑑−1𝑖 (

∑𝑘
𝑗=1 𝑑

−1
𝑗 − 𝑑−1𝑖 )

𝑚2(
∑𝑘

𝑗=1 𝑑
−1
𝑗 )2(𝑚 ⋅

∑𝑘
𝑗=1 𝑑

−1
𝑗 + 1)

=
𝑑−1𝑖 (

∑𝑘
𝑗=1 𝑑

−1
𝑗 − 𝑑−1𝑖 )

(
∑𝑘

𝑗=1 𝑑
−1
𝑗 )2(𝑚 ⋅

∑𝑘
𝑗=1 𝑑

−1
𝑗 + 1)
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From this expression, it is clear that as 𝑚 increases, the term (𝑚 ⋅
∑𝑘

𝑗=1 𝑑
−1
𝑗 + 1) also increases, thereby reducing the overall variance.

Conversely, for small values of 𝑚, this term does not significantly
increase, leading to higher variance.

The expected values of the weights in the Dirichlet distribution
remain constant across different multipliers because they depend on
the relative proportions of the parameters. However, the variabil-
ity of the weights differs significantly. Higher multipliers (e.g., 100)
result in lower variability, leading to more stable and predictable
synthetic samples. In contrast, lower multipliers (e.g., 0.01) introduce
higher variability, producing a more diverse but less stable set of syn-
thetic samples. This mathematical analysis underscores the importance
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Fig. B.1. F1 Scores across 100 simulated datasets with two different imbalance ratios and an outlier ratio of 0.1 were computed for three different classifiers. On the left-hand
side of the dashed line are the results obtained from the proposed methods, while on the right-hand side are the results from existing methods.
of choosing an appropriate multiplier based on the desired balance
between diversity and stability in synthetic sample generation for
addressing class imbalance.

Fig. C.1 and Fig. C.2 present the mean F1 scores for different mul-
tipliers of Dirichlet ExtSMOTE, considering outlier ratios of 0.05 and
0.1 respectively, across two different imbalance ratios for each type. It
is important to note that the F1 scores vary significantly based on the
selection of the classifier, the multiplier, and the number of outliers
in the dataset, especially in scenarios with highly imbalanced data.
This underscores the critical need for hyperparameter optimization
to achieve higher performance. The figures illustrate how the careful
tuning of parameters can lead to significant improvements in classifier
effectiveness, demonstrating the necessity of customized approaches in
handling imbalanced datasets with varying outlier ratios.

C.1.2. Impact of different types
Three different types are introduced in the Dirichlet ExtSMOTE

method: Inverse Distance (D), Uniform Distribution (UD), and Uniform
Vector (UV). Fig. C.3 illustrates the changes in Mean F1 Scores for
these different types under two varying outlier ratios and two different
imbalance ratios.
19 
C.2. Parameters of FCRP SMOTE

C.2.1. Impact of different 𝛼 values
We evaluated the performance changes of FCRP SMOTE as the

parameter alpha varied from 0.1 to 1. Fig. C.4 shows the mean F1
scores for two imbalance rates and outlier ratios using three classifiers,
highlighting the impact of alpha on the effectiveness of FCRP SMOTE
under different conditions.

C.3. Parameters of BGMM SMOTE

C.3.1. Impact of different priors
Two priors are introduced with BGMM SMOTE. Fig. C.5 shows

the mean F1 scores for two imbalance rates and outlier ratios using
three classifiers, highlighting the impact of selecting the prior on the
effectiveness of BGMM SMOTE under different conditions.

Appendix D. PCA plots of outliers detected by LOF

The Fig. D.1, Fig. D.2, Fig. D.3, and Fig. D.4 show the Principal Com-
ponent Analysis (PCA) plots for the first two components, highlighting
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Fig. B.2. PR-AUCs across 100 simulated datasets with two different imbalance ratios and an outlier ratio of 0.1 were computed for three different classifiers. On the left-hand
side of the dashed line are the results obtained from the proposed methods, while on the right-hand side are the results from existing methods.
the distribution of outliers within the minority class across 25 real-
world datasets analysed in the experimental study. The outliers were
detected by the Local Outlier Factor (LOF) method for each application
dataset used in the analysis.

Appendix E. Comprehensive evaluation with additional accuracy
measures

In addition to evaluating our methods based solely on the F1 score,
we conducted a comprehensive assessment using a variety of perfor-
mance metrics to ensure a robust evaluation of our classifiers. These
metrics included recall, precision, PR AUC (Precision-Recall Area Under
Curve), and MCC (Matthews Correlation Coefficient). By incorporating
these additional measures, we aimed to capture different aspects of
classifier performance, providing a more holistic understanding of their
effectiveness.

Tables E.1, E.2, E.3, E.4, E.5, and E.6 present the detailed results for
PR AUC and MCC for each of the three classifiers: Logistic Regression,
k-Nearest Neighbors (k-NN), and Random Forest. These tables illustrate
how each classifier performs under different conditions, allowing for a
20 
nuanced comparison of their capabilities. By analysing these metrics,
we demonstrate the strengths and limitations of each classifier and the
effectiveness of our methods across various scenarios.

E.1. MCC

Tables E.1–E.3.

E.2. PR-AUC

Tables E.4–E.6.

Data availability

Data used in this manuscript can be accessed through the UCI
Machine Learning Repository at http://archive.ics.uci.edu/ml.

http://archive.ics.uci.edu/ml
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Fig. B.3. MCCs across 100 simulated datasets with two different imbalance ratios and an outlier ratio of 0.1 were computed for three different classifiers. On the left-hand side
of the dashed line are the results obtained from the proposed methods, while on the right-hand side are the results from existing methods.
Table E.1
MCC results of 17 comparative algorithms on 25 imbalanced datasets using 100 × 5 fold cross-validation with a Logistic Regression classifier.

Dataset Distance
ExtSMOTE

Dirichlet
ExtSMOTE

BGMM
SMOTE

FCRP
SMOTE

SMOTE SMOTE
LOF

SMOTE
TomekLinks

SMOTE
ENN

SMOTE
IPF

DBSMOTE ProWSyn DSMOTE cluster
SMOTE

Gaussian
SMOTE

Borderline
SMOTE

ADASYN Baseline

yeast6 0.4204 0.4229 0.4547 0.4075 0.3637 0.3646 0.3646 0.4434 0.3653 0.4379 0.3582 0.3265 0.3079 0.3294 0.4417 0.3248 0.4434
yeast5 0.4503 0.4462 0.465 0.4354 0.4161 0.4137 0.4124 0.5051 0.4112 0.5508 0.3978 0.4441 0.3688 0.379 0.4663 0.3652 0.5051
yeast-1289vs7 0.2013 0.2443 0.2301 0.1977 0.2054 0.2053 0.1965 0.2474 0.1949 0.0745 0.1939 0.206 0.2522 0.2329 0.2398 0.1955 0.2474
yeast4 0.2727 0.3136 0.3269 0.2927 0.2929 0.2948 0.2947 0.299 0.2976 0.3846 0.2987 0.2482 0.2903 0.3101 0.3618 0.2746 0.299
yeast-2vs8 0.2375 0.3891 0.2769 0.2636 0.4682 0.4669 0.4455 0.6263 0.4433 0.2867 0.4961 0.6363 0.6082 0.4954 0.2087 0.1447 0.6263
glass12357vs6 0.5223 0.6464 0.5718 0.5924 0.6321 0.6321 0.6321 0.4875 0.6321 0.6806 0.6321 0.4346 0.6268 0.4896 0.6321 0.6321 0.4875
yeast-1458vs7 0.1446 0.1982 0.1516 0.1732 0.1661 0.1637 0.1602 0 0.1576 0.0904 0.1302 0.1456 0.1233 0.1532 0.173 0.1573 0
oil 0.5422 0.5416 0.4974 0.5027 0.4975 0.4978 0.5033 0.5534 0.5023 0.5102 0.5132 0.4444 0.4897 0.415 0.4642 0.4966 0.5534
abalone9_18 0.4987 0.5005 0.4748 0.4798 0.4394 0.4417 0.4549 0.4929 0.4549 0.5189 0.4838 0.5067 0.471 0.364 0.5277 0.4108 0.4929
glass12367vs5 0.4423 0.5437 0.5447 0.4806 0.5267 0.5259 0.519 0.3422 0.5208 0.1989 0.5458 0.3158 0.408 0.4879 0.563 0.5375 0.3422
thyroid_sick 0.5797 0.5861 0.5583 0.5715 0.5571 0.5583 0.5548 0.6935 0.5542 0.6927 0.5838 0.5754 0.6225 0.3766 0.5373 0.5298 0.6935
yeast-1vs7 0.3385 0.3313 0.3586 0.3194 0.2887 0.2897 0.2928 0.1763 0.2941 0.2171 0.287 0.3135 0.3137 0.3303 0.3051 0.293 0.1763
us_crime 0.4564 0.4673 0.4689 0.47 0.4623 0.4607 0.4571 0.4744 0.4589 0.4615 0.4778 0.4972 0.4757 0.4706 0.4988 0.448 0.4744
glass12vs5 0.6241 0.785 0.687 0.7652 0.776 0.7743 0.7706 0.7162 0.7705 0.4701 0.7874 0.6046 0.7459 0.654 0.7329 0.791 0.7162
spectrometer 0.8451 0.8479 0.8513 0.846 0.8361 0.8336 0.8381 0.8534 0.8379 0.8375 0.8467 0.8284 0.8485 0.7818 0.8394 0.8209 0.8607
landsat_satellite 0.2371 0.245 0.2467 0.2485 0.2661 0.2654 0.2646 0.0945 0.2655 0.0592 0.261 0.0656 0.2568 0.257 0.2604 0.2579 0.0945
mfeatmor0 0.9916 0.9924 0.9916 0.9916 0.9908 0.9915 0.9901 0.99 0.9905 0.9916 0.9939 0.9709 0.9858 0.9741 0.9916 0.9889 0.9916
yeast3 0.6754 0.6713 0.6757 0.6658 0.6231 0.6244 0.6251 0.7293 0.6251 0.6789 0.6411 0.7031 0.6225 0.6304 0.6244 0.6183 0.7293
mfeatmor01 0.8966 0.8969 0.8917 0.8947 0.8853 0.8898 0.89 0.9053 0.8854 0.9049 0.8844 0.8855 0.8833 0.8291 0.797 0.7088 0.9084
glass123vs567 0.7872 0.8166 0.8267 0.8171 0.7965 0.7948 0.7973 0.737 0.7982 0.7993 0.7829 0.7978 0.7961 0.7807 0.7842 0.7892 0.7329
parkinsons 0.5496 0.5747 0.5587 0.557 0.5444 0.5469 0.5431 0.6491 0.5462 0.5895 0.5266 0.6076 0.5427 0.4987 0.5567 0.5584 0.6491
haber-
mans_survival

0.262 0.3154 0.2858 0.2873 0.3012 0.304 0.301 0.2233 0.3061 0.2756 0.3109 0.145 0.3241 0.2923 0.2791 0.3111 0.2233

glass23567vs1 0.4348 0.454 0.4398 0.435 0.4203 0.4217 0.4267 0.4957 0.4179 0.4172 0.4348 0.4879 0.4496 0.4546 0.4507 0.4458 0.4957
breast_cancer 0.9462 0.9485 0.9493 0.9467 0.9438 0.9435 0.9422 0.9496 0.9444 0.9471 0.9408 0.8996 0.9431 0.9431 0.9223 0.9211 0.9484
banknote 0.9799 0.9826 0.9825 0.9815 0.9809 0.9808 0.981 0.981 0.9808 0.9805 0.9812 0.903 0.9811 0.95 0.981 NA 0.981
21 
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Fig. C.1. Mean F1 Scores for different multipliers of Dirichlet ExtSMOTE for an outlier ratio of 0.05 and two different imbalance ratios for each type.
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Fig. C.2. Mean F1 Scores for different multipliers of Dirichlet ExtSMOTE for an outlier ratio of 0.1 and two different imbalance ratios for each type.
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Fig. C.3. Mean F1 Scores for different types of Dirichlet ExtSMOTE for two different outlier ratios and two different imbalance ratios.
Table E.2
MCC results of 17 comparative algorithms on 25 imbalanced datasets using 100 × 5 fold cross-validation with a K-NN classifier.

Dataset Distance
ExtSMOTE

Dirichlet
ExtSMOTE

BGMM
SMOTE

FCRP
SMOTE

SMOTE SMOTE
LOF

SMOTE
TomekLinks

SMOTE
ENN

SMOTE
IPF

DBSMOTE ProWSyn DSMOTE cluster
SMOTE

Gaussian
SMOTE

Borderline
SMOTE

ADASYN Baseline

yeast6 0.4748 0.506 0.5154 0.4983 0.4 0.4 0.3952 0.499 0.3979 0.442 0.3741 0.4653 0.4022 0.3962 0.3947 0.3571 0.499
yeast5 0.512 0.5941 0.549 0.57 0.4954 0.4924 0.4868 0.6553 0.4905 0.6444 0.4487 0.6018 0.5092 0.4226 0.5322 0.4464 0.6553
yeast-1289vs7 0.111 0.2443 0.2216 0.2048 0.2224 0.2279 0.2225 0.2337 0.2251 0.11 0.2074 0.3196 0.2506 0.221 0.2172 0.2207 0.2337
yeast4 0.3298 0.3957 0.3675 0.3705 0.334 0.3328 0.3455 0.3066 0.3398 0.3087 0.3304 0.363 0.3296 0.3689 0.3431 0.3272 0.3066
yeast-2vs8 0.5133 0.5437 0.4461 0.4333 0.4019 0.4019 0.3746 0.6461 0.3799 0.6009 0.4167 0.6287 0.4332 0.4122 0.3266 0.3644 0.6461
glass12357vs6 0.8174 0.7875 0.6857 0.7665 0.7864 0.7897 0.7945 0.7571 0.7955 0.7571 0.7352 0.6961 0.7462 0.5423 0.7862 0.7859 0.7571
yeast-1458vs7 0.0044 0.1616 0.0069 0.0444 0.0982 0.0985 0.1007 0.0162 0.1055 0.1257 0.1277 0.1354 0.1132 0.0761 0.1024 0.0899 0.0162
oil 0.492 0.5941 0.551 0.5492 0.5559 0.5586 0.5583 0.5435 0.5594 0.5917 0.5561 0.3559 0.5431 0.4199 0.6071 0.5478 0.5435
abalone9_18 0.3351 0.4082 0.4286 0.4273 0.3791 0.378 0.3825 0.4267 0.3831 0.4058 0.3823 0.4239 0.3404 0.3716 0.4025 0.3533 0.4267
glass12367vs5 0.6008 0.6697 0.6234 0.6628 0.6548 0.6624 0.6739 0.4325 0.6836 0.2077 0.6465 0.3754 0.562 0.5671 0.6442 0.6261 0.4325
thyroid_sick 0.5266 0.5422 0.5458 0.5464 0.5561 0.5537 0.5514 0.5378 0.5554 0.4877 0.5192 0.487 0.5458 0.489 0.538 0.5566 0.5378
yeast-1vs7 0.303 0.392 0.3067 0.3512 0.3773 0.3753 0.3652 0.4295 0.3663 0.2494 0.3277 0.3994 0.4096 0.3211 0.4094 0.3529 0.4295
us_crime 0.3367 0.3667 0.3649 0.3711 0.3583 0.3579 0.3613 0.3951 0.3565 0.3051 0.3941 0.3997 0.3675 0.3673 0.3607 0.3453 0.3951
glass12vs5 0.2675 0.5669 0.5185 0.5487 0.6376 0.6218 0.6553 0.293 0.6513 0.2017 0.6474 0.2765 0.6 0.6847 0.6416 0.6435 0.293
spectrometer 0.7894 0.8678 0.7576 0.8235 0.8332 0.8384 0.8401 0.8273 0.8374 0.8071 0.8135 0.7958 0.8185 0.8667 0.789 0.8134 0.8388
landsat_satellite 0.6246 0.6736 0.6314 0.6549 0.6702 0.6702 0.6663 0.6723 0.6674 0.6703 0.6531 0.4775 0.6614 0.5948 0.6559 0.6667 0.6723
mfeatmor0 0.9916 0.9926 0.9916 0.9916 0.9832 0.9877 0.9846 0.9889 0.9855 0.9916 0.9874 0.9462 0.9864 0.9611 0.9916 0.9862 0.9916
yeast3 0.6914 0.7123 0.7216 0.7161 0.685 0.685 0.6904 0.7322 0.688 0.66 0.7308 0.7191 0.6572 0.6851 0.5983 0.6508 0.7322
mfeatmor01 0.9367 0.9383 0.9389 0.9352 0.9321 0.9319 0.9332 0.939 0.933 0.9222 0.932 0.9223 0.9277 0.928 0.8995 0.8603 0.9453
glass123vs567 0.8258 0.84 0.8355 0.8363 0.8118 0.8103 0.8139 0.8165 0.8099 0.8095 0.8331 0.7882 0.8045 0.8329 0.8017 0.8024 0.8189
parkinsons 0.8288 0.8291 0.8071 0.821 0.7827 0.7847 0.7825 0.7039 0.7897 0.6765 0.7437 0.6935 0.79 0.7914 0.8068 0.8255 0.7039
haber-
mans_survival

0.0453 0.1874 0.1529 0.149 0.1839 0.1827 0.1704 −0.003 0.1854 0.0551 0.2153 0.1122 0.1753 0.2307 0.1848 0.178 −0.003

glass23567vs1 0.603 0.6387 0.6167 0.6148 0.5771 0.5764 0.5776 0.5419 0.5755 0.5309 0.5351 0.531 0.6139 0.5251 0.5875 0.5954 0.5419
breast_cancer 0.9175 0.9286 0.9211 0.9202 0.9174 0.9186 0.9145 0.9128 0.9186 0.9112 0.9146 0.8842 0.9149 0.9124 0.9038 0.9042 0.9125
banknote 0.9971 0.9976 0.9971 0.9971 0.9971 0.9971 0.9971 0.9971 0.9971 0.9971 0.9967 0.9126 0.9971 0.9747 0.9971 NA 0.9971
24 
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Fig. C.4. Mean F1 Scores for different alpha values of FCRP SMOTE for two different outlier ratios and two different imbalance ratios.
Table E.3
MCC results of 17 comparative algorithms on 25 imbalanced datasets using 100 × 5 fold cross-validation with a Random Forest classifier.

Dataset Distance
ExtSMOTE

Dirichlet
ExtSMOTE

BGMM
SMOTE

FCRP
SMOTE

SMOTE SMOTE
LOF

SMOTE
TomekLinks

SMOTE
ENN

SMOTE
IPF

DBSMOTE ProWSyn DSMOTE cluster
SMOTE

Gaussian
SMOTE

Borderline
SMOTE

ADASYN Baseline

yeast6 0.5556 0.6105 0.63 0.6039 0.5424 0.5487 0.5426 0.5173 0.5485 0.5212 0.4931 0.5172 0.5608 0.5364 0.5231 0.5281 0.5157
yeast5 0.6115 0.6269 0.6228 0.6273 0.5235 0.5273 0.5194 0.5986 0.5144 0.5904 0.5131 0.6549 0.5472 0.6157 0.5408 0.5068 0.5988
yeast-1289vs7 0.0584 0.1397 0.0719 0.097 0.1534 0.1504 0.1599 0.2947 0.1505 0.1165 0.1292 0.3183 0.2688 0.3463 0.2162 0.119 0.2924
yeast4 0.2814 0.3899 0.3638 0.366 0.392 0.3896 0.3779 0.3551 0.3729 0.3637 0.3808 0.3413 0.4245 0.3983 0.4299 0.3814 0.359
yeast-2vs8 0.5919 0.6001 0.5337 0.4813 0.4381 0.4372 0.4298 0.6131 0.429 0.6306 0.5114 0.6227 0.5445 0.659 0.3427 0.2806 0.6139
glass12357vs6 0.7149 0.7347 0.6629 0.6485 0.6165 0.6222 0.616 0.5771 0.609 0.6192 0.6369 0.5408 0.6209 0.6143 0.6219 0.5968 0.5826
yeast-1458vs7 −0.0037 0.1539 0.0094 0.0573 0.0987 0.0924 0.0924 −0.0032 0.0841 −0.0117 0.0937 0.1614 0.0727 0.0327 0.1103 0.0889 0.0005
oil 0.4578 0.5413 0.4939 0.5658 0.5014 0.5066 0.5128 0.4817 0.5136 0.3278 0.5916 0.4637 0.4484 0.5656 0.5372 0.4928 0.4819
abalone9_18 0.3663 0.3945 0.3683 0.3724 0.3395 0.3387 0.3454 0.3763 0.3436 0.4026 0.3681 0.3966 0.3452 0.3482 0.3739 0.3219 0.3821
glass12367vs5 0.659 0.8418 0.6662 0.7232 0.7437 0.7417 0.7552 0.6031 0.7555 0.7286 0.7788 0.6221 0.682 0.7265 0.7619 0.7412 0.6024
thyroid_sick 0.8521 0.8769 0.8625 0.8515 0.8673 0.8626 0.8646 0.853 0.8652 0.85 0.8402 0.8061 0.871 0.8631 0.8609 0.8633 0.8521
yeast-1vs7 0.1528 0.3019 0.1863 0.2536 0.322 0.3199 0.303 0.3373 0.3171 0.1233 0.2151 0.3931 0.3295 0.3575 0.3265 0.2724 0.3373
us_crime 0.4449 0.4574 0.4364 0.4577 0.462 0.4618 0.4588 0.4768 0.4621 0.3822 0.4815 0.4711 0.4538 0.4851 0.4611 0.451 0.4799
glass12vs5 0.671 0.8069 0.7643 0.7802 0.7811 0.7884 0.7845 0.692 0.7824 0.7485 0.7843 0.5826 0.7265 0.7773 0.7821 0.7786 0.6922
spectrometer 0.8188 0.8466 0.798 0.8201 0.8003 0.8094 0.8018 0.8314 0.8002 0.8306 0.7939 0.8062 0.8013 0.8102 0.8011 0.7839 0.825
landsat_satellite 0.6254 0.6456 0.6401 0.6394 0.6529 0.6483 0.6503 0.6454 0.6505 0.6441 0.6456 0.6262 0.6572 0.5997 0.6511 0.6523 0.6459
mfeatmor0 0.9916 0.9918 0.9915 0.9916 0.9878 0.9905 0.9875 0.988 0.9871 0.9901 0.9903 0.9498 0.9864 0.9867 0.9916 0.9858 0.9916
yeast3 0.7402 0.7618 0.7522 0.757 0.7584 0.7599 0.7592 0.7339 0.7599 0.7429 0.7617 0.731 0.7574 0.7424 0.7516 0.7496 0.7352
mfeatmor01 0.9413 0.9477 0.9453 0.9406 0.9384 0.9393 0.938 0.9419 0.9379 0.9436 0.9463 0.9241 0.9358 0.9426 0.9154 0.8663 0.9481
glass123vs567 0.86 0.8762 0.8598 0.8707 0.856 0.8559 0.854 0.8548 0.8627 0.8559 0.8659 0.7772 0.8549 0.8586 0.8415 0.8387 0.8542
parkinsons 0.7022 0.7584 0.7391 0.7437 0.7538 0.7564 0.7564 0.7372 0.7576 0.7434 0.7239 0.669 0.7608 0.7277 0.7427 0.7585 0.7369
haber-
mans_survival

0.1934 0.2194 0.1988 0.2272 0.1767 0.1728 0.1933 0.137 0.1928 0.1333 0.2234 0.1244 0.181 0.2525 0.1649 0.1698 0.1354

glass23567vs1 0.7274 0.7765 0.747 0.7408 0.7343 0.7349 0.7307 0.7372 0.7284 0.75 0.6901 0.736 0.7322 0.6838 0.7263 0.7228 0.7437
breast_cancer 0.9172 0.9246 0.9183 0.92 0.9163 0.9166 0.9186 0.9132 0.9166 0.9169 0.9148 0.8856 0.917 0.9147 0.9115 0.9206 0.9136
banknote 0.9873 0.9891 0.9873 0.9883 0.9867 0.9864 0.9866 0.986 0.9868 0.9864 0.9864 0.8965 0.9867 0.9822 0.986 NA 0.9861
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Fig. C.5. Mean F1 Scores for different priors of BGMM SMOTE for two different outlier ratios and two different imbalance ratios.

Fig. D.1. Principal component plots for the first two components, showing the distribution of outliers within the minority class across 4 datasets detected by the Local Outlier
Factor (LOF) method.
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Fig. D.2. Principal component plots for the first two components, showing the distribution of outliers within the minority class across 8 datasets detected by the Local Outlier
Factor (LOF) method.
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Fig. D.3. Principal component plots for the first two components, showing the distribution of outliers within the minority class across 8 datasets detected by the Local Outlier
Factor (LOF) method.
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Fig. D.4. Principal component plots for the first two components, showing the distribution of outliers within the minority class across 6 datasets detected by the Local Outlier
Factor (LOF) method.
Table E.4
PR-AUC results of 17 comparative algorithms on 25 imbalanced datasets using 100 × 5 fold cross-validation with a Logistic Regression classifier.

Dataset Distance
ExtSMOTE

Dirichlet
ExtSMOTE

BGMM
SMOTE

FCRP
SMOTE

SMOTE SMOTE
LOF

SMOTE
TomekLinks

SMOTE
ENN

SMOTE
IPF

DBSMOTE ProWSyn DSMOTE cluster
SMOTE

Gaussian
SMOTE

Borderline
SMOTE

ADASYN Baseline

yeast6 0.5159 0.5168 0.5392 0.5122 0.4988 0.4987 0.5027 0.5758 0.5039 0.5056 0.5092 0.3705 0.5016 0.5076 0.5129 0.4936 0.5758
yeast5 0.5521 0.5454 0.5507 0.5384 0.5373 0.5373 0.536 0.5626 0.5343 0.5789 0.5425 0.4867 0.4964 0.5347 0.5456 0.523 0.5626
yeast-1289vs7 0.3738 0.3786 0.4231 0.3798 0.406 0.407 0.4043 0.4304 0.4036 0.2161 0.4043 0.251 0.4188 0.4151 0.3916 0.4111 0.4304
yeast4 0.4274 0.4452 0.4407 0.4307 0.4477 0.4469 0.4452 0.3931 0.4485 0.4396 0.4598 0.2966 0.4327 0.4851 0.473 0.4364 0.3931
yeast-2vs8 0.4275 0.4863 0.4661 0.4439 0.5404 0.5417 0.5248 0.7204 0.525 0.4547 0.5573 0.6943 0.6402 0.5531 0.4242 0.4311 0.7204
glass12357vs6 0.696 0.7865 0.732 0.7472 0.7797 0.7797 0.7797 0.632 0.7797 0.7499 0.7797 0.5878 0.7752 0.6396 0.7797 0.7797 0.632
yeast-1458vs7 0.3133 0.3817 0.3218 0.3543 0.3794 0.3745 0.379 0.5216 0.3784 0.2888 0.3687 0.2279 0.3626 0.3081 0.3559 0.374 0.5216
oil 0.5758 0.5766 0.5395 0.5439 0.565 0.5652 0.5698 0.5931 0.5687 0.5798 0.5816 0.4934 0.5585 0.5317 0.5112 0.5646 0.5931
abalone9_18 0.5728 0.5782 0.5687 0.5679 0.5662 0.5665 0.5726 0.5728 0.5727 0.5662 0.5833 0.5971 0.5812 0.4768 0.6093 0.556 0.5728
glass12367vs5 0.4898 0.5948 0.5927 0.5296 0.5915 0.5902 0.5837 0.402 0.5849 0.3566 0.612 0.3815 0.48 0.5983 0.617 0.6031 0.402
thyroid_sick 0.6374 0.6412 0.6272 0.634 0.6358 0.6325 0.6345 0.725 0.6344 0.7214 0.653 0.6204 0.6704 0.5581 0.6267 0.6276 0.725
yeast-1vs7 0.4576 0.4577 0.4868 0.4493 0.4667 0.468 0.4681 0.345 0.4697 0.329 0.4607 0.4357 0.4574 0.4794 0.4394 0.4806 0.345
us_crime 0.535 0.5477 0.5472 0.5499 0.5601 0.5579 0.555 0.5428 0.5567 0.5663 0.5697 0.561 0.5618 0.5893 0.5704 0.5537 0.5428
glass12vs5 0.6741 0.8139 0.7321 0.7969 0.8054 0.8038 0.8002 0.7511 0.8001 0.5316 0.8174 0.661 0.7839 0.724 0.7677 0.82 0.7511
spectrometer 0.8691 0.871 0.872 0.8697 0.8593 0.8575 0.861 0.8764 0.8607 0.8623 0.8679 0.8624 0.8696 0.8159 0.8615 0.846 0.8835
landsat_satellite 0.4919 0.5039 0.5098 0.5144 0.5463 0.5467 0.5447 0.3316 0.5455 0.201 0.5281 0.198 0.5225 0.5722 0.5374 0.5408 0.3316
mfeatmor0 0.9932 0.9939 0.9932 0.9932 0.9922 0.9929 0.9916 0.9918 0.9919 0.9932 0.995 0.9767 0.9878 0.9777 0.9932 0.9906 0.9932
yeast3 0.7372 0.7343 0.7379 0.7306 0.712 0.7131 0.7132 0.7729 0.7131 0.7372 0.7141 0.7537 0.7085 0.7174 0.7157 0.7143 0.7729
mfeatmor01 0.9237 0.924 0.92 0.9224 0.9159 0.9191 0.9192 0.9316 0.9159 0.9305 0.9157 0.9215 0.9135 0.8753 0.8546 0.7935 0.9361
glass123vs567 0.8608 0.877 0.8847 0.8781 0.8625 0.8612 0.8629 0.829 0.8635 0.8682 0.8529 0.8719 0.8621 0.8517 0.8532 0.8565 0.8265
parkinsons 0.7053 0.7281 0.7111 0.7124 0.7103 0.7117 0.7088 0.795 0.7112 0.7295 0.7003 0.7707 0.7108 0.6817 0.719 0.7228 0.795
haber-
mans_survival

0.5785 0.5973 0.5882 0.5844 0.5699 0.5721 0.5713 0.4906 0.5726 0.5649 0.571 0.4425 0.5823 0.5519 0.5612 0.583 0.4906

glass23567vs1 0.6938 0.7081 0.7053 0.6997 0.69 0.6912 0.6924 0.7168 0.6891 0.6884 0.6935 0.7115 0.7005 0.6998 0.7108 0.7105 0.7168
breast_cancer 0.9764 0.9772 0.9783 0.9766 0.9748 0.9747 0.9741 0.9782 0.9751 0.9776 0.9728 0.9565 0.9746 0.9727 0.9601 0.9585 0.9785
banknote 0.9907 0.9923 0.9933 0.9918 0.9937 0.9936 0.9937 0.9941 0.9936 0.9935 0.9935 0.9675 0.9938 0.9764 0.9941 NA 0.9941
29 
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Table E.5
PR-AUC results of 17 comparative algorithms on 25 imbalanced datasets using 100 × 5 fold cross-validation with a K-NN classifier.

Dataset Distance
ExtSMOTE

Dirichlet
ExtSMOTE

BGMM
SMOTE

FCRP
SMOTE

SMOTE SMOTE
LOF

SMOTE
TomekLinks

SMOTE
ENN

SMOTE
IPF

DBSMOTE ProWSyn DSMOTE cluster
SMOTE

Gaussian
SMOTE

Borderline
SMOTE

ADASYN Baseline

yeast6 0.5039 0.5293 0.5404 0.5235 0.4336 0.4336 0.4301 0.526 0.4319 0.4658 0.4363 0.499 0.4366 0.4871 0.4244 0.396 0.526
yeast5 0.5413 0.614 0.5726 0.595 0.5339 0.5318 0.5282 0.6832 0.5304 0.6702 0.518 0.6309 0.5404 0.5096 0.557 0.4986 0.6832
yeast-1289vs7 0.1504 0.2851 0.2661 0.2706 0.2844 0.2896 0.2896 0.4304 0.2921 0.1815 0.3623 0.4317 0.2999 0.2992 0.263 0.285 0.4304
yeast4 0.381 0.4329 0.4089 0.4083 0.3732 0.3724 0.386 0.3728 0.3807 0.3596 0.4296 0.4267 0.366 0.438 0.3795 0.3684 0.3728
yeast-2vs8 0.5964 0.5803 0.5145 0.5066 0.4722 0.473 0.4452 0.726 0.453 0.6604 0.496 0.7193 0.4792 0.4881 0.3818 0.4328 0.726
glass12357vs6 0.8547 0.8181 0.7446 0.8073 0.8103 0.8137 0.8175 0.807 0.8185 0.8047 0.7708 0.8071 0.7822 0.6488 0.8103 0.8092 0.807
yeast-1458vs7 0.0543 0.2236 0.072 0.1114 0.165 0.1663 0.1714 0.1626 0.1774 0.3035 0.2638 0.3803 0.1763 0.1703 0.1606 0.1577 0.1626
oil 0.5408 0.63 0.5915 0.5815 0.5886 0.5908 0.5909 0.5833 0.5921 0.6324 0.5919 0.4367 0.5805 0.4946 0.6395 0.582 0.5833
abalone9_18 0.397 0.4714 0.4815 0.492 0.4502 0.4502 0.454 0.5028 0.4563 0.4858 0.4685 0.4912 0.4054 0.4372 0.4675 0.4254 0.5028
glass12367vs5 0.683 0.715 0.6674 0.7034 0.7042 0.7271 0.715 0.522 0.7183 0.559 0.6779 0.5861 0.6926 0.6525 0.7104 0.6589 0.522
thyroid_sick 0.5893 0.591 0.5941 0.5925 0.5984 0.5975 0.5944 0.5946 0.5985 0.583 0.5644 0.5491 0.5902 0.5738 0.582 0.5983 0.5946
yeast-1vs7 0.3686 0.4652 0.376 0.427 0.4576 0.4543 0.454 0.4896 0.4578 0.4211 0.449 0.5223 0.4791 0.4136 0.4824 0.428 0.4896
us_crime 0.4205 0.4505 0.4434 0.4513 0.4314 0.431 0.4357 0.4939 0.4315 0.3813 0.4605 0.4819 0.4379 0.439 0.4322 0.4216 0.4939
glass12vs5 0.448 0.6247 0.5843 0.6096 0.6885 0.6734 0.704 0.3668 0.7005 0.4678 0.697 0.4901 0.6559 0.7454 0.7015 0.6936 0.3668
spectrometer 0.8196 0.8879 0.7993 0.8499 0.8584 0.8631 0.8634 0.8543 0.8608 0.8423 0.8398 0.8287 0.8486 0.8854 0.8263 0.8425 0.8635
landsat_satellite 0.6895 0.7197 0.695 0.712 0.7202 0.7203 0.7179 0.7189 0.7187 0.7171 0.7045 0.5535 0.714 0.6931 0.71 0.7213 0.7189
mfeatmor0 0.9932 0.9941 0.9932 0.9932 0.9857 0.9898 0.987 0.9908 0.9878 0.9932 0.9895 0.9572 0.9886 0.9661 0.9932 0.9885 0.9932
yeast3 0.7475 0.7633 0.7685 0.7645 0.7396 0.7393 0.7441 0.7776 0.7419 0.7263 0.7752 0.7685 0.7184 0.7415 0.6655 0.7076 0.7776
mfeatmor01 0.9555 0.9564 0.9573 0.9534 0.9508 0.9506 0.9516 0.9559 0.9514 0.9439 0.9501 0.9482 0.9474 0.9469 0.9264 0.8968 0.9613
glass123vs567 0.8877 0.8949 0.8936 0.8932 0.8751 0.8744 0.877 0.8783 0.8744 0.873 0.8874 0.8642 0.8703 0.8861 0.8718 0.8708 0.88
parkinsons 0.8967 0.8962 0.8793 0.8884 0.8625 0.8634 0.8624 0.8116 0.8667 0.7986 0.8323 0.8139 0.8681 0.8608 0.8765 0.8883 0.8116
haber-
mans_survival

0.3881 0.4952 0.4722 0.4706 0.4947 0.4945 0.4899 0.3079 0.4958 0.3867 0.5228 0.4188 0.4755 0.5378 0.4953 0.4993 0.3079

glass23567vs1 0.7802 0.799 0.7864 0.7851 0.7643 0.7641 0.7649 0.7477 0.7637 0.7409 0.7425 0.739 0.7865 0.7394 0.7709 0.7745 0.7477
breast_cancer 0.9597 0.9649 0.961 0.961 0.9585 0.9591 0.9567 0.956 0.9591 0.9539 0.9568 0.9491 0.9576 0.9545 0.9527 0.9523 0.9561
banknote 0.9984 0.9987 0.9984 0.9984 0.9984 0.9984 0.9984 0.9984 0.9984 0.9984 0.9982 0.9709 0.9984 0.9862 0.9984 NA 0.9984
Table E.6
PR-AUC results of 17 comparative algorithms on 25 imbalanced datasets using 100 × 5 fold cross-validation with a Random Forest classifier.

Dataset Distance
ExtSMOTE

Dirichlet
ExtSMOTE

BGMM
SMOTE

FCRP
SMOTE

SMOTE SMOTE
LOF

SMOTE
TomekLinks

SMOTE
ENN

SMOTE
IPF

DBSMOTE ProWSyn DSMOTE cluster
SMOTE

Gaussian
SMOTE

Borderline
SMOTE

ADASYN Baseline

yeast6 0.5985 0.6371 0.6574 0.6272 0.5672 0.5727 0.5671 0.5509 0.572 0.5547 0.524 0.5489 0.5812 0.5589 0.5464 0.5544 0.5486
yeast5 0.6451 0.6567 0.6519 0.6536 0.5511 0.5539 0.5479 0.6262 0.543 0.6217 0.5529 0.6884 0.5738 0.636 0.5865 0.5361 0.6254
yeast-1289vs7 0.2089 0.1979 0.1151 0.1416 0.1963 0.1934 0.2029 0.3847 0.1935 0.3645 0.2027 0.3992 0.3096 0.408 0.2573 0.1633 0.3803
yeast4 0.3972 0.4346 0.4023 0.4019 0.4275 0.4246 0.4139 0.4329 0.4094 0.443 0.4489 0.4008 0.4639 0.4465 0.4701 0.4173 0.4364
yeast-2vs8 0.6874 0.6841 0.6127 0.5519 0.5006 0.5016 0.4952 0.7086 0.492 0.7182 0.5856 0.7161 0.6208 0.7374 0.4123 0.3399 0.7098
glass12357vs6 0.7966 0.8043 0.7837 0.767 0.7786 0.7764 0.774 0.744 0.7742 0.7533 0.7903 0.7324 0.7865 0.6644 0.7834 0.7579 0.7459
yeast-1458vs7 0.3463 0.2426 0.0645 0.1196 0.1564 0.1509 0.1521 0.3748 0.1439 0.1689 0.1794 0.3982 0.1256 0.2082 0.1653 0.1471 0.3806
oil 0.5564 0.6061 0.5507 0.6258 0.5707 0.5748 0.5795 0.5672 0.5807 0.5084 0.6505 0.5644 0.5265 0.6207 0.5882 0.5718 0.5615
abalone9_18 0.4409 0.4563 0.4393 0.4374 0.4048 0.4039 0.4099 0.4582 0.4083 0.4755 0.4471 0.4875 0.4204 0.4243 0.4375 0.3885 0.4638
glass12367vs5 0.7892 0.8722 0.7957 0.8054 0.8031 0.804 0.8141 0.7448 0.8131 0.797 0.8284 0.7601 0.7729 0.7668 0.8156 0.7997 0.7461
thyroid_sick 0.8688 0.8892 0.8773 0.8669 0.8799 0.8758 0.8775 0.8692 0.878 0.8678 0.8557 0.8284 0.8839 0.8778 0.8748 0.8762 0.8684
yeast-1vs7 0.3842 0.4086 0.2619 0.3309 0.3883 0.3881 0.3724 0.4836 0.3853 0.3734 0.3121 0.5329 0.4009 0.4374 0.3938 0.3446 0.4886
us_crime 0.5185 0.5242 0.5059 0.521 0.5231 0.5227 0.5203 0.5476 0.5232 0.506 0.5421 0.5432 0.5162 0.5441 0.5231 0.513 0.55
glass12vs5 0.7239 0.845 0.8024 0.8171 0.8193 0.8254 0.8211 0.7539 0.8198 0.7976 0.821 0.7089 0.7718 0.8134 0.8199 0.8173 0.7556
spectrometer 0.8507 0.8742 0.8301 0.8482 0.8284 0.8375 0.8292 0.8603 0.828 0.8639 0.8219 0.845 0.8307 0.8381 0.8306 0.8144 0.8601
landsat_satellite 0.6831 0.698 0.6932 0.6916 0.7035 0.6994 0.7009 0.7044 0.7012 0.7033 0.6972 0.6857 0.7074 0.6576 0.7013 0.7023 0.7051
mfeatmor0 0.9932 0.9934 0.9932 0.9932 0.9898 0.9923 0.9896 0.9901 0.9892 0.9919 0.9921 0.9603 0.9887 0.9889 0.9932 0.9881 0.9932
yeast3 0.7836 0.8006 0.7929 0.7968 0.7977 0.799 0.7984 0.779 0.799 0.7862 0.8006 0.7797 0.7968 0.785 0.7925 0.7907 0.7801
mfeatmor01 0.9585 0.9629 0.961 0.9572 0.9555 0.9562 0.9551 0.9584 0.955 0.96 0.9616 0.9505 0.9533 0.9588 0.9377 0.901 0.9637
glass123vs567 0.9076 0.9172 0.907 0.9127 0.9034 0.903 0.9016 0.9035 0.907 0.9044 0.9085 0.8573 0.9025 0.9024 0.8943 0.8909 0.9032
parkinsons 0.8064 0.844 0.8315 0.833 0.8426 0.8433 0.8432 0.836 0.844 0.8353 0.821 0.7942 0.849 0.8222 0.8349 0.847 0.8361
haber-
mans_survival

0.4767 0.5015 0.4834 0.506 0.4704 0.4676 0.485 0.428 0.4882 0.4356 0.5086 0.4228 0.468 0.5287 0.4624 0.4677 0.4263

glass23567vs1 0.8478 0.8756 0.8583 0.8544 0.8516 0.8519 0.8493 0.8547 0.8483 0.861 0.827 0.8561 0.8507 0.8237 0.8471 0.8456 0.8583
breast_cancer 0.9564 0.9598 0.9566 0.9574 0.9556 0.9558 0.9568 0.956 0.9558 0.9574 0.9541 0.9502 0.9561 0.9547 0.953 0.9575 0.9561
banknote 0.9936 0.9944 0.9937 0.9939 0.9936 0.9935 0.9935 0.9933 0.9936 0.9934 0.9932 0.964 0.9936 0.9906 0.9933 NA 0.9933
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