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Introduction: Class Imbalance
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• Occurs when the number of instances in 
different classes is significantly 
disproportionate.

• Examples: 
• Spam Detection
• Fraud Detection
• Medical Diagnosis
• Churn Prediction

• Issue:
• Leads to biased models
• Decreases predictive accuracy

Figure: Class imbalance with outliers in the minority class



Synthetic Minority Oversampling Technique 
(SMOTE)
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• Balancing the Dataset:
• Strategy:

• Create new samples for the minority class 
to help balance the dataset.

• Technique:
• Interpolate between randomly chosen 

minority class samples and their nearest 
neighbors.

• 𝑝𝑛𝑒𝑤 = 𝑝0 + 𝛼(𝑝3 − 𝑝0)

Figure: SMOTE data generation



Challenges of SMOTE
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• SMOTE is challenged by outliers within the minority class.

Figure: Original Data Figure: Re-sampled data with SMOTE



Novel Methods
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• Technique:
• Use a weighted average of neighbouring 

instances.

• 𝑝𝑛𝑒𝑤 =
σ𝑗=1

𝑘 (𝑤𝑗×𝑝𝑗)

σ𝑗=1
𝑘 𝑤𝑗

, 𝑗 = 1, … , 𝑘 

• Improve robustness against outliers and noisy data.
• Learn from a more extensive set of nearest neighbours

• Challenge:
• Selecting suitable weights to enhance resilience 

to outliers and noisy data.

Figure: Proposed method data generation



Developing new SMOTE extensions
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• Solution:
• Use inverse distance to the median centroid of the minority class.
• Higher weights for closer instances in feature space.

1. Distance extSMOTE 
2. Dirichlet extSMOTE 

I. Uniform Random Vector      
II. Uniform Vector           

III. Inverse Distance

3. FCRP SMOTE - SMOTE with Finite Chinese Restaurant Process Idea 

4. BGMM SMOTE - SMOTE with Bayesian Gaussian Mixture Model 
I. with Dirichlet prior            
II. with Dirichlet Process prior



Distance extSMOTE 
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• 𝑑𝑗 ∈ ℝ is the Euclidean distance between the median centroid of the minority class 
and the nearest neighbours

• 𝑤𝑗 = 𝑑𝑗,𝑛𝑜𝑟𝑚
−1 = Normalized inverse distance

(a). This scenario occurs when an outlier is chosen as a neighbouring point. (b). The values within parentheses indicate 𝑑𝑗 , 𝑤𝑗 .

An example of creating a 
sample - Distance 

extSMOTE



Dirichlet extSMOTE (Inverse Distance) 
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• 𝑤𝑗 = 𝐷𝑖𝑟 𝛼 𝑗

• 𝛼 = 𝑚. 𝑫−1, 𝑫 = 𝑑1, … , 𝑑𝑘 , 𝑫−1 = [
1

𝑑1
, … ,

1

𝑑𝑘
] 

(a). This scenario occurs when an outlier is chosen as a neighbouring point. (b). The values within parentheses indicate 𝑑𝑗 , 𝑤𝑗 .

An example of creating a 
sample - Dirichlet 

extSMOTE



FCRP 
SMOTE
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Showcasing the weight selection of FCRP 

SMOTE using Finite Chinese Restaurant 
Process with scaling parameter α = 0.1



FCRP SMOTE 
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• Initial preferences = 𝑑𝑛𝑜𝑟𝑚
−1

• 𝑤𝑗 = Final allocation probabilities

(a). This scenario occurs when an outlier is chosen as a neighbouring point. (b). The values within parentheses indicate 𝑑𝑗 , 𝑤𝑗 .

An example of creating a 
sample – FCRP SMOTE



BGMM SMOTE 
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• A probabilistic model used for clustering
• Cluster Assignment

1.  Expectation Maximization:
• Expectation (E-step): For each data point, the model calculates the probability of the point 

belonging to each cluster
• Maximization (M-step): Update the parameters of the model by maximizing the expected log-

likelihood

2. Cluster Assignment: Probabilistically assigns data points to clusters based 
on the calculated probabilities.

3. Soft Assignments: This does not definitively allocate a point to a single 
cluster.



BGMM SMOTE 
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• 𝐶𝑗 = Cluster assignment of the 𝐽𝑡ℎ  nearest neighbour

• 𝑤𝑗 = Normalized cluster probability of the cluster which the median centroid 
belongs

(a). This scenario occurs when an outlier is chosen as a neighbouring point. (b). The values within parentheses indicate 𝑑𝑗 , 𝑤𝑗 .

An example of creating a 
sample – BGMM SMOTE



Simulation Results
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• 𝑿𝑚𝑖𝑛𝑜𝑟𝑖𝑡𝑦−𝑜𝑢𝑡𝑙𝑖𝑒𝑟𝑠 ~ 𝒩(𝜇1, Σ1)

• 𝑿𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦 ~ 𝒩 𝜇2, Σ2

• 𝑿𝑜𝑢𝑡𝑙𝑖𝑒𝑟𝑠 ~ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−10,10) 

Figure: Comparison of resampled data



Simulation Results
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Figure: F1 Scores for 100 simulated datasets with 5-fold cross-validation.

𝐹1 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

             = 𝑇𝑃

𝑇𝑃+
1

2
(𝐹𝑃+𝐹𝑁)

 



Application Results
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• Used 11 imbalanced datasets from the UCI repository
Name Target Ratio #S #F

1 mammographic_masses malignant 2.2:1 961 5

2 Breast_cancer malignant 2.7:1 569 30

3 Diabetes Diagnosis: yes 2.9:1 768 8

4 Ecoli imU 8.6:1 336 7

5 Spectrometer >=44 11:1 531 93

6 Isolet A, B 12:1 7797 617

7 Car_eval_34 Good, v good 12:1 1728 21

8 Us_crime >0.65 12:1 1994 100

9 Thyroid_sick Sick 15:1 3772 52

10 Oil Minority 22:1 937 49

11 Abalone19 Age 19 130.5:1 4177 8



Application Results
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Figure: F1 Score Ranks for the datasets with 30 x 5-fold cross-validation.



Conclusion

• Class imbalance is a significant problem in classification.

• Novel methods are advancing imbalanced classification within machine learning.

• Effectively incorporate measures to minimize outlier effects. 

• Creating more accurate and reliable predictive models. 

• Across diverse domains, including fraud detection, medical diagnosis, and churn 

prediction, where imbalanced datasets with outliers are prevalent.

• The manuscript related to this work is in review.
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